Advertisement

Organic Radicals and Molecular Magnetism

Chapter

Abstract

The nature (ferro- or antiferromagnetic) and magnitude of exchange interactions between nitroxide radicals connected by organic linkers are determined by topological rules that EPR can reveal: the spectrum for a dilute solution of molecules containing pairs and triads of radicals recorded at room temperature reveals intramolecular interactions, whereas the spin of the ground state and the exchange parameters can be deduced from the temperature-dependence of the total intensity, used here as a measure of the magnetisation. This novel “molecular magnetism” approach is used in the context of current developments in nanosciences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alster E. & Silver B.L. (1986) Molecular Physics, 58: 977-987.Google Scholar
  2. Anderson P.W. (1963) “Exchange in insulators: superexchange, direct exchange and double exchange” in Magnetism vol II, Rado G.T. et Suhl H., eds., Academic Press, New York.Google Scholar
  3. Barone V. et al. (2011) Journal of Chemical Theory and Computation 7: 699-706.Google Scholar
  4. Barra A.-L. et al. (2005) Magnetic Resonance in Chemistry 43: S183-S191.Google Scholar
  5. Belorizky E. & Fries P.H. (1993) Journal de Chimie Physique et de Physico-Chimie Biologique 90: 1077-1100.Google Scholar
  6. Belorizky E. (1993) Journal de Physique 3: 423-445.Google Scholar
  7. Bencini A. & Gatteschi D. (1990) EPR of Exchange Coupled Systems, Springer-Verlag, Berlin.Google Scholar
  8. Berson J.A. (1988) in The Chemistry of the Quinonoid Compounds, vol. II, Patai S., Rappoport Z., eds, Wiley, New York.Google Scholar
  9. Bieber A., Wautelet P., André J.-J. & Turek P. (2003), unpublished results.Google Scholar
  10. Bleaney B. & Bowers K.D. (1952) Proceedings of the Royal Society of London. Series A 214: 451-465.Google Scholar
  11. Bogani L. & Wernsdorfer W. (2008) Nature Materials 7: 179-186.Google Scholar
  12. Bonnet M. et al. (1995) Molecular Crystals & Liquid Crystals 271: 35-53.Google Scholar
  13. Borden W.T., Iwamura H. & Berson J.A. (1994) Accounts of Chemical Research 27: 109-116.Google Scholar
  14. Breitenkamp R.B. & Tew G.N. (2004) Macromolecules 37: 1163-1165.Google Scholar
  15. Brière R. et al. (1965) Bulletin de la Société Chimique de France 3290-3297.Google Scholar
  16. Brinkmann M., Turek P. & André J.-J. (1997) Thin Solid Films 303: 107-116.Google Scholar
  17. Brinkmann M. et al. (2004) Journal of Physical Chemistry A 108: 8170-8179.Google Scholar
  18. Calvo R. (2000) Journal of the American Chemical Society, 122: 7327-7341.CrossRefGoogle Scholar
  19. Catala L. (1999) PhD thesis, Nitronyl-nitroxide and imino-nitroxide oligoradicals: synthesis and study of the magnetic properties in the isolated state and in the crystalline phase, Université Louis Pasteur, Strasbourg.Google Scholar
  20. Catala L. et al. (2005) Chemistry - A European Journal 11: 2440-2454.Google Scholar
  21. Catala L. et al. (2001) Chemistry - A European Journal 7: 2466-2480.Google Scholar
  22. Catala L. & Turek P. (1999) Journal de Chimie Physique et de Physico-Chimie Biologique 96: 1551-1558.Google Scholar
  23. Chittipeddi S. et al. (1987) Physical Review Letters 58: 2695-2698.Google Scholar
  24. Choi S. H., Kim B. & Frisbie C.D. (2008) Science 320: 1482-1486.Google Scholar
  25. Chu Q. & Pang Y. (2003) Macromolecules 36: 4614-4618.Google Scholar
  26. Cirujeda J. et al. (1995) Journal of Materials Chemistry 5: 243-252.Google Scholar
  27. Crayston J.A., Devine J.N. & Walton J.C. (2000) Tetrahedron 56: 7829-7857.Google Scholar
  28. Dei A. et al. (2004) Journal of Magnetism and Magnetic Materials 272-276: 1083-1084.Google Scholar
  29. Dvolaitzky M., Chiarelli R. & Rassat A. (1992) Angewandte Chemie International Edition 31: 180-181.Google Scholar
  30. Fang S. et al. (1995) Journal of the American Chemical Society 117: 6727-6731.Google Scholar
  31. Fittipaldi M. et al. (2009) Physical Chemistry Chemical Physics 11: 6555-6568.Google Scholar
  32. Frisch M. J. et al. (1998) Gaussian, Inc., Pittsburgh PA.Google Scholar
  33. Fujita J. et al. (1996) Journal of the American Chemical Society 118: 9347-9351.Google Scholar
  34. Gallani J.-L. et al. (2001) Langmuir 17: 1104-1109.Google Scholar
  35. Gatteschi D. et al. (2006) Coordination Chemistry Review 250: 1514-1529.Google Scholar
  36. Glarum S.H. & Marshall J.H. (1967) Journal of Chemical Physics 47: 1374-1378.Google Scholar
  37. Hernandez-Gasiò E. et al. (1994) Chemistry of Materials 6: 2398-2411.Google Scholar
  38. Higashiguchi K., Yumoto K. & Matsuda K. (2010) Organic Letters 12: 5284-5286.Google Scholar
  39. Hirel C. et al. (2005) European Journal of Organic Chemistry 348-359.Google Scholar
  40. Itoh K. & Kinoshita M. (2000) Molecular Magnetism: New Magnetic Materials, Kodansha et Gordon and Breach Science Publishers, Tokyo et Amsterdam.Google Scholar
  41. Kahn O. & Briat B. (1976) Journal of the Chemical Society Faraday Transactions II 72: 268-281.Google Scholar
  42. Kahn O. (1993) Molecular Magnetism, VCH Publishers, New York.Google Scholar
  43. Kanno F. et al. (1993) Journal of the American Chemical Society 115: 847-850.Google Scholar
  44. Kinoshita M. et al.(1991) Chemistry Letters 1225-1228.Google Scholar
  45. Kyatskaya S. et al. (2009) Journal of the American Chemical Society 131: 15143-15151.Google Scholar
  46. Lahti P. M. (1999) Magnetic Properties of Organic Materials, Marcel Dekker, New York.Google Scholar
  47. Liu K. et al. (2008) Journal of Physical Chemistry C 112: 4342-4349.Google Scholar
  48. Lu Q. et al. (2009) ACS Nano 3: 3861-3868.Google Scholar
  49. Luckhurst G.R. & Pedulli G. F. (1971) Molecular Physics 20: 1043-1055.Google Scholar
  50. Matsuda K. & Iwamura H. (1998) Journal of the Chemical Society Perkin Transactions 2: 1023-1026.Google Scholar
  51. Metzner K.E., Libertini L.J. & Calvin M. (1977) Journal of the American Chemical Society 99: 4500-4502.Google Scholar
  52. Miller J.S. & Drillon M. (2001-2005) Magnetism: Molecules to Materials, volumes I-V, Wiley-VCH-Weinheim.Google Scholar
  53. Miller J.S. & Epstein A.J. (1994) Angewandte Chemie International Edition 33: 385-415.Google Scholar
  54. Noodleman L. & Case D.A. (1992) Advances in Inorganic Chemistry 38: 423-470.Google Scholar
  55. Noodleman L. & Davidson E. (1986) Chemical Physics 109: 131-143.Google Scholar
  56. Noodleman L. (1981) Journal of Chemical Physics 74: 5737-5743.Google Scholar
  57. Onofrio N. & Mouesca J.-M. (2010) Journal of Physical Chemistry A 114: 6149-6156.Google Scholar
  58. Rajadurai C. et al.(2003) Journal of Organic Chemistry 68: 9907-9915.Google Scholar
  59. Rajca A. (1994) Chemical Reviews 94: 871-893.CrossRefGoogle Scholar
  60. Schultz D., Boal A.K. & Farmer G.T. (1997) Journal of the American Chemical Society 119: 3846-3847.Google Scholar
  61. Sessoli R. et al. (1993) (a) Nature 365: 141-143.Google Scholar
  62. Sessoli R. et al. (1993) (b) Journal of the American Chemical Society 115: 1804-1816.Google Scholar
  63. Silverman S.K. & Dougherty D. (1993) Journal of Physical Chemistry 97: 13273-13283.Google Scholar
  64. Sorace L. et al. (2011) Chemical Society Review 40: 3092-3104.Google Scholar
  65. Stewart J.J.P. (1990) MOPAC 6.0 QCPE 455.Google Scholar
  66. Stewart J.J.P. (1993) MOPAC 93 Fujitsu Lim., Tokyo.Google Scholar
  67. Stroh C. (2002) PhD thesis, Magnetic interactions in molecular systems containing unpaired electrons, Université Louis Pasteur, Strasbourg.Google Scholar
  68. Stroh C. et al. (2004) Chemical Communications 2050-2051.Google Scholar
  69. Stroh C. et al. (2005) Journal of Materials Chemistry 15: 850-858.Google Scholar
  70. Takahashi M. et al. (1991) Physical Review Letters 67: 746-748.Google Scholar
  71. Takui T. et al. (1995) Molecular Crystals & Liquid Crystals 271: 55-66.Google Scholar
  72. Tamura M. et al. (1991) Chemical Physics Letters 186: 401-404.Google Scholar
  73. Thomas L. et al. (1996) Nature 383: 145-147.Google Scholar
  74. Troiani F. et al. (2010) Nanotechnology 21: 274009-18.Google Scholar
  75. Turek P. et al. (1991) Chemical Physics Letters 180: 327-331.Google Scholar
  76. Ullman E.F. et al. (1972) Journal of the American Chemical Society 94: 7049-7059.Google Scholar
  77. Volume 1: Bertrand P. (2020) Electron Paramagnetic Resonance Spectroscopy - Fundamentals, Springer, Heidelberg.Google Scholar
  78. Wautelet P. (1996) PhD thesis, Synthesis and characterisation of phenylene ethynylene-type oligomers bearing stable organic radicals. Study of the longdistance intramolecular magnetic coupling, Université Louis Pasteur, Strasbourg.Google Scholar
  79. Wautelet P. et al. (2001) Polyhedron 20: 1571-1576.Google Scholar
  80. Wautelet P. et al. (2003) Journal of Organic Chemistry 68: 8025-8036.Google Scholar
  81. Weissman S.I. & Kothe G. (1975) Journal of the American Chemical Society 97: 2537-2538.Google Scholar
  82. Yoon H. P. et al. (2010) Nano Letters 10: 2897-2902.Google Scholar
  83. Yoshioka N. et al. (1994) Journal of Organic Chemistry 59: 4272-4280.Google Scholar
  84. Zheludev A. et al. (1994) Journal of the American Chemical Society 116: 2019-2027.Google Scholar
  85. Ziessel R. et al. (2004) Journal of the American Chemical Society 126: 12604-12613.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Strasbourg, Chemistry Institute (UMR 7177, UDS-CNRS)StrasbourgFrance

Personalised recommendations