Skip to main content

EPR of Short-Lived Magnetic Species

  • Chapter
  • First Online:
Electron Paramagnetic Resonance Spectroscopy
  • 1022 Accesses

Abstract

There exist several methods to record the spectrum of short-lived paramagnetic species. The temporal resolution of “stopped flow” and “freeze quench” techniques is around 10−3 s. Time resolved techniques based on in situ generation of species, direct detection and repeating the experiment for several values of the magnetic field can reduce this to 10−7 s. These techniques are used in particular to study photochemical reactions. The shape and intensity of the spectra produced by radical intermediates are determined by the CIDEP effect and its analysis allows us to distinguish between “radical pair” and “triplet state” mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins P.W. & Evans G.T. (1974) Molecular Physics 27: 1633-1644.

    Google Scholar 

  • Ballou D.P. & Palmer G.A. (1974) Analytical Chemistry 46: 1248-1253.

    Google Scholar 

  • Borg D.C. (1964) Nature 201: 1087-1090.

    Article  ADS  Google Scholar 

  • Bray R.C. (1961) Biochemical Journal 81: 189-195.

    Google Scholar 

  • Buckley C.D. & McLauchlan K.A. (1985) Molecular Physics 54: 1-22.

    Google Scholar 

  • Chow Y.L. et al. (1992) Tetrahedron Letters 33: 3315-3318.

    Google Scholar 

  • Closs G.L. (1969) Journal of the American Chemical Society 91: 4552-4554.

    Article  Google Scholar 

  • DeWeerd K. et al. (2001) Biochemistry 40: 15846-15855.

    Article  Google Scholar 

  • Fessenden R.W. & Schuler R.H. (1963) Journal of Chemical Physics 39: 2147-2195.

    Google Scholar 

  • Forbes M.D.E. (1997) Photochemistry and Photobiology 65: 73-81.

    Google Scholar 

  • Gatlik I. et al. (1999) Journal of the American Chemical Society 121: 8332-8336.

    Google Scholar 

  • Grigoryants V.M., Veselov A.V & Scholes C.P. (2000) Biophysical Journal 78: 2702-2708.

    Google Scholar 

  • Hore P.J. et al. (1981) Chemical Physics Letters 77: 127-130.

    Google Scholar 

  • Hubbell W.L., Froncisz W. & Hyde J.S. (1987) Review of Scientific Instruments 58: 1879-1886.

    Google Scholar 

  • Hartridge H. & Roughton F.J.W. (1923) Proceeding of the Royal Society (London) 94: 336-367.

    Google Scholar 

  • Jäger M. & Norris J.R. (2001) Journal of Magnetic Resonance 150: 26-34.

    Google Scholar 

  • Kobori Y. et al. (1998) Journal of Physical Chemistry A 102: 5160-5170.

    Google Scholar 

  • Lassman G., Schmidt P.P. & Lubitz W. (2005) Journal of Magnetic Resonance 172: 312-323.

    Google Scholar 

  • Levstein P.R. & van Willigen H. (1991) Journal of Chemical Physics 95: 900-908.

    Google Scholar 

  • Maurel V. (2004) Experimental characterization of some radical mechanisms in the photochemistry of pyrimidines and of aromatic intro compounds: a time resolved EPR study completed by mass spectroscopy-detected spin trapping experiments., PhD thesis, Université Joseph Fourier - Grenoble I.

    Google Scholar 

  • McLauchlan K.A. (1997) Journal of the Chemical Society, Perkin Transactions 2: 2465-2472.

    Google Scholar 

  • McLauchlan K.A. (1989) “Time-resolved EPR” in Advanced EPR, Applications in Biology and Biochemistry, Hoff A.J. ed., Elsevier, Amsterdam: 345-369.

    Google Scholar 

  • McLauchlan K.A. & Stevens D.G.(1988) Accounts of Chemical Research 21: 54-59.

    Google Scholar 

  • Muus L.T., Frydkjaer S. & Bondrup Nielsen K. (1978) Chemical Physics 30: 163-168.

    Google Scholar 

  • Sienkiewicz A., Qu K. & Scholes C.P. (1994) Review of Scientific Instruments 65: 68-74.

    Google Scholar 

  • Sienkiewicz A. et al. (1999) Journal of Magnetic Resonance 136: 137-142.

    Google Scholar 

  • Tero-Kubota S., Katsui A. & Kobori Y. (2001) Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2: 17-33.

    Google Scholar 

  • Turro N.J., Kleinman M.H. & Karatekin E. (2000) Angewandte Chemie, International Edition 39: 4436-4461.

    Google Scholar 

  • Van Willigen H., Levstein P.R. & Ebersole M.H. (1993) Chemical Reviews 93: 173-197.

    Google Scholar 

  • Verkhovskaya M.L. et al. (2008) Proceeding of the National Academy of Sciences of the USA 105: 3763-3767.

    Google Scholar 

  • Volume 1: Bertrand P. (2020) Electron Paramagnetic Resonance Spectroscopy - Fundamentals, Springer, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurel, V., Gambarelli, S. (2020). EPR of Short-Lived Magnetic Species. In: Electron Paramagnetic Resonance Spectroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-39668-8_10

Download citation

Publish with us

Policies and ethics