Skip to main content

Fundamentals of Physical Vapor Transport Process

  • Chapter
  • First Online:

Abstract

The crystal growth of physical vapor transport (PVT) transforms the original source material powder into the final form of compound semiconducting crystal in a closed ampoule. The vapor species were transported from the source at one end of the ampoule to the crystal at the other end because of the applied temperature gradient between the source and the crystal. To understand the fundamentals of PVT, one of the most important parameters during PVT, the partial pressures of the vapor species in equilibrium with the compounds as a function of temperature with different stoichiometry, have been measured by optical absorption technique to establish the three-phase curve. Then using an associated solution model for the liquid phase, which is assumed to consist of certain atomic/molecular species, the Gibbs energy of mixing for the liquid can be expressed in terms of the interaction parameters between these species. After the establishment of the best-fit parameters, the complete phase diagram and thermodynamic properties of the system can be generated for the applications of crystal growth experiments. The thermodynamic analysis has been applied to binary, ternary and quaternary systems such as Hg–Te, Cd–Te and Hg–Cd–Te as well as In–Sb, Ga–Sb and In–Ga–Sb, Hg–Cd–Zn–Te, Zn–Se and Zn–Se–Te. Then, a one-dimensional diffusion model, which includes the vapor species in equilibrium with a binary compound and the residual inert gases, was established to identify the critical growth parameters such as the heat treatment conditions, the thermal field for the growth process, the composition of the grown (ternary) crystal as well as the growth rate. From the results of the one-dimensional diffusion analysis, four experimentally adjustable parameters: the source temperature, the deposition temperature, the partial pressure ratio over the source and the residual gas pressure, determine the diffusive mass flux in a PVT system. However, two of these four parameters, the partial pressure ratio over source and the residual gas pressure, are more critical than the others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Huang, R.F. Brebrick, J. Electrochem. Soc. 135, 486 (1988)

    Article  Google Scholar 

  2. R.F. Brebrick, A.J. Strauss, J. Chem. Phys. 40, 3230 (1964)

    Article  ADS  Google Scholar 

  3. D.A. Northrup, J. Phys. Chem. 75, 118 (1971)

    Article  Google Scholar 

  4. R.F. Brebrick, A.J. Strauss, J. Chem. Phys. 41, 197 (1964)

    Article  ADS  Google Scholar 

  5. Y. Huang, R.F. Brebrick, J. Electrochem. Soc. 135, 1547 (1988)

    Article  Google Scholar 

  6. R.C. Sharma, U.A. Chang, J. Cryst. Growth 88, 193 (1988)

    Article  ADS  Google Scholar 

  7. Y.G. Sha, C.H. Su, W. Palosz, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, H.-C. Liu, R.F. Brebrick. J. Cryst. Growth 146, 42 (1995)

    Google Scholar 

  8. R.F. Brebrick, H.-C. Liu, High Temp. Mater. Sci. 35, 215 (1996)

    Google Scholar 

  9. R.F. Brebrick, J. Electrochem. Soc. 116, 1274 (1969)

    Article  Google Scholar 

  10. P. Goldfinger, M. Jeunehomme, Trans. Faraday Soc. 59, 2851 (1963)

    Article  Google Scholar 

  11. P.Z. Floegel, Anorg. Allg. Chem. 370, 16 (1969)

    Article  Google Scholar 

  12. R.F. Brebrick, J. Electrochem. Soc. 135, 486 (1971)

    Google Scholar 

  13. H. Liu, Ph.D. Dissertation, Marquette University, March 1995

    Google Scholar 

  14. R.F. Brebrick, H.-C. Liu, J. Ph. Equilib. 17, 495 (1996)

    Article  Google Scholar 

  15. T.-C. Yu, R.F. Brebrick, J. Ph. Equilib. 13, 476 (1992)

    Article  Google Scholar 

  16. A.N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier Publishing Co., Amsterdam/London/New York, 1963)

    Google Scholar 

  17. R.F. Brebrick, Prog. Solid State Chem. 13, Ch. 5. in Non Stoichiometry in Binary Semiconductor Compounds, ed. by H. Reiss (Pergamon Press, Oxford 1967), p. 213

    Google Scholar 

  18. Su Ching-Hua, Mater. Sci. Semicond. Proc. 90, 259 (2019)

    Article  Google Scholar 

  19. R.F. Brebrick, J. Electrochem. Soc. 118, 2014 (1971)

    Article  Google Scholar 

  20. R.F. Brebrick, A.J. Strauss, J. Phys. Chem. Solids 26, 989 (1965)

    Article  ADS  Google Scholar 

  21. C.H. Su, P.-K. Liao, T. Tung, R.F. Brebrick, High Temp. Sci. 14, 181 (1981)

    Google Scholar 

  22. R.F. Brebrick, J. Chem. Phys. 43, 3846 (1965)

    Article  ADS  Google Scholar 

  23. Su Ching-Hua, Cryst. Growth 281, 577 (2005)

    Article  ADS  Google Scholar 

  24. J.P. Schwartz, T. Tung, R.F. Brebrick, J. Electrochem. Soc. 128, 438 (1981)

    Article  Google Scholar 

  25. T. Tung, L. Golonka, R.F. Brebrick, J. Electrochem. Soc. 128, 451 (1981)

    Article  Google Scholar 

  26. C.H. Su, P.-K. Liao, R.F. Brebrick, J. Electrochem. Soc. 132, 942 (1985)

    Google Scholar 

  27. K.-T. Chen, Y.-G. Sha, R.F. Brebrick, J. Vac. Sci. Technol. A8, 1086 (1990)

    Article  ADS  Google Scholar 

  28. K.C. Mills, Thermodynamic Data for Inorganic Sulfides, Selinides, and Tellurides (Butterworth, London, 1974)

    Google Scholar 

  29. R.F. Brebrick, C.H. Su, P.K. Liao, Semiconductors and Semimetals, vol. 19, ed. by R.K. Willardson, A.C. Beer (Academic Press, NY, 1983)

    Google Scholar 

  30. M.M. Faktor, I. Garrett, Growth of Crystals from the Vapour (Chapman and Hall, London, 1974)

    Google Scholar 

  31. Su Ching-Hua, Cryst. Growth 80, 333 (1987)

    Article  ADS  Google Scholar 

  32. R.C. Reid, J.M. Prausnitx, T.K. Sherwood, The Properties of Gasses and Liquids, 3rd edn. (McGraw-Hill, New York, 1977), p. 113

    Google Scholar 

  33. C.H. Su, P.K. Liao, Y. Huang, S.-S. Liou, R.F. Brebrick, J. Chem. Phys. 81, 11 (1984)

    Google Scholar 

  34. D.M. Shteingradt, V.E. Lyusternik, Russ. J. Phys. Chem. 56, 1379 (1982)

    Google Scholar 

  35. R.A. Svehla, NASA Tech Report R-132 (Lewis Research Center, Cleveland, Ohio 1962)

    Google Scholar 

  36. G.J. Russell, J. Woods, J. Cryst. Growth 46, 323 (1979)

    Article  ADS  Google Scholar 

  37. G. Schmidt, R. Gruehn, J. Cryst. Growth 57, 585 (1982)

    Article  ADS  Google Scholar 

  38. Y. Morimoto, T. Igarashi, H. Sugahara, S. Nasu, J. Non-Cryst. Solids 139, 35 (1992)

    Article  ADS  Google Scholar 

  39. T.C. Harman, J.P. McVittie, J. Electron. Mater. 3, 843 (1974)

    Article  ADS  Google Scholar 

  40. W. Palosz, H. Wiedemeier, J. Cryst. Growth 131, 193 (1993)

    Article  ADS  Google Scholar 

  41. W. Palosz, F.R. Szofran, S.L. Lehoczky, J. Cryst. Growth 142, 215 (1994)

    Article  ADS  Google Scholar 

  42. W. Palosz, J. Cryst. Growth 267, 475 (2004)

    Article  ADS  Google Scholar 

  43. T.K. Sherwood, Absorption and Extraction (McGraw-Hill, New York, 1937)

    Google Scholar 

  44. W. Palosz, H. Wiedemeier, J. Cryst. Growth 129, 653 (1993)

    Article  ADS  Google Scholar 

  45. K. Klosse, P. Ullersma, J. Cryst. Growth 18, 167 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hua Su .

Appendix

Appendix

2.1.1 A.1 Thermophysical Properties of Vapor Phase

2.1.1.1 A.1.1 Viscosity

The viscosity of a one-component gas phase can be calculated by assuming a Lennard-Jones 6-12 intermolecular potential between species as:

$$\varPsi \left( r \right) = 4\varepsilon \left( {\left( {\frac{\sigma }{r}} \right)^{12} - \left( {\frac{\sigma }{r}} \right)^{6} } \right)$$
(34)

The two interaction parameter, ε and σ, are, respectively, the potential well depth and the intermolecular distance at Ψ = 0. The viscosity μ is then given by:

$$\mu = 26.69\frac{{\sqrt {MT} }}{{\sigma^{2} \varOmega_{\upsilon } }}$$
(35)

where μ is in micro-poise, T in K, σ in \(\dot{A}\) and

$$\varOmega_{\upsilon } = \frac{A}{{T_{r}^{B} }} + \frac{C}{{\exp (DT_{r} )}} + \frac{E}{{\exp (FT_{r} )}}$$
(36)

where Tr = kT/ε and A = 1.16145, B = 0.14874, C = 0.52487, D = 0.77320, E = 2.16178, F = 2.43787.

The viscosity of a gas mixture, μm, at low pressure is given by:

$$\mu_{m} = \sum\limits_{i = 1}^{n} {\frac{{y_{i} \mu_{i} }}{{\sum\limits_{j = 1}^{n} {y_{j} \varphi_{ij} } }}}$$
(37)

where

$$\phi_{ij} = \frac{{\left( {1 + \left( {\mu_{i} /\mu_{j} } \right)^{1/2} \left( {M_{j} /M_{i} } \right)^{1/4} } \right)^{2} }}{{\left( {8\left( {1 + M_{i} /M_{j} } \right)} \right)^{1/2} }}$$
(38)

and μi, and yi are the viscosity of pure-component i and mole fraction of species i, respectively.

2.1.1.2 A.1.2 Thermal Conductivity

The thermal conductivity of a gas system, κ, is related to its viscosity, μ, by the Eucken factor, fEu:

$$f_{Eu} = \frac{\kappa M}{{\mu C_{\upsilon ,m} }} = 1.32 + 1.77\left( {\frac{R}{{C_{\upsilon ,m} }}} \right)$$
(39)

where M is the molar weight, Cυ,m the molar heat capacity at constant volume and R the gas constant.

2.1.2 A.2 Thermophysical Properties of a Typical ZnSe PVT Growth System

T (source)

1160 ℃

μ (viscosity)

4.3 × 10−4 poise (g/s cm)

T (crystal)

1130 ℃

ν (kinematic viscosity) = μ/ρ

36 stoke (cm2/s)

PZn

0.11 atm

a (radius)

0.75 cm

PSe2

0.0007 atm

L (length)

10 cm

Presidual gas (36% CO2, 26% CO 26% N2 and 12% H2)

0.01 atm

g0 (gravitational acceleration)

980 cm/s2

β = 1/T (thermal expansion)

7.1 × 10−4 K−1

κ (thermal conductivity)

5.42 × 10−4 J/cm s K

ρ (density)

1.2 × 10−5 g/cm3

Cν (heat capacity)

0.76 J/g K

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, CH. (2020). Fundamentals of Physical Vapor Transport Process. In: Vapor Crystal Growth and Characterization. Springer, Cham. https://doi.org/10.1007/978-3-030-39655-8_2

Download citation

Publish with us

Policies and ethics