Skip to main content

How Facebook and Google Accidentally Created a Perfect Ecosystem for Targeted Disinformation

  • Conference paper
  • First Online:
Disinformation in Open Online Media (MISDOOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12021))

Abstract

Online platforms providing information and media content follow certain goals and optimize for certain metrics when deploying automated decision making systems to recommend pieces of content from the vast amount of media items uploaded to or indexed by their platforms every day. These optimization metrics differ markedly from, for example, the so-called news factors journalists traditionally use to make editorial decisions. Social networks, video platforms and search engines thus create content hierarchies that reflect not only user interest but also their own monetization goals. This sometimes has unintended, societally highly problematic effects: Optimizing for metrics like dwell time, watch time or “engagement” can promote disinformation and propaganda content. This chapter provides examples and discusses relevant mechanisms and interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmid, C.E., Stock, L., Walter, S.: Der strategische Einsatz von Fake News zur Propaganda im Wahlkampf. In: Sachs-Hombach, K., Zywietz, B. (eds.) Fake News, Hashtags & Social Bots, pp. 69–95. Springer Fachmedien Wiesbaden, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-22118-8_4

    Google Scholar 

  2. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31, 211–236 (2017). https://doi.org/10.1257/jep.31.2.211

    Article  Google Scholar 

  3. Frischlich, L.: “Propaganda3” – Einblicke in die Inszenierung und Wirkung von Online-Propaganda auf der Makro-Meso-Mikro-Ebene. In: Sachs-Hombach, K., Zywietz, B. (eds.) Fake News, Hashtags & Social Bots, pp. 133–170. Springer Fachmedien Wiesbaden, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-22118-8_6

    Google Scholar 

  4. Tucker, J., et al.: Social media, political polarization, and political disinformation: a review of the scientific literature. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3144139

    Article  Google Scholar 

  5. Neuberger, C., Nuernbergk, C., Rischke, M.: “Googleisierung” oder neue Quellen im Netz? In: Neuberger, C., Nuernbergk, C., Rischke, M. (eds.) Journalismus im Internet, pp. 295–334. VS Verlag für Sozialwissenschaften, Wiesbaden (2009). https://doi.org/10.1007/978-3-531-91562-3_9

    Chapter  Google Scholar 

  6. Bruns, A.: Gatewatching: Collaborative Online News Production. P. Lang, New York (2005)

    Google Scholar 

  7. Bruns, A.: Vom Gatekeeping zum Gatewatching. In: Neuberger, C., Nuernbergk, C., Rischke, M. (eds.) Journalismus im Internet, pp. 107–128. VS Verlag für Sozialwissenschaften, Wiesbaden (2009). https://doi.org/10.1007/978-3-531-91562-3_3

    Chapter  Google Scholar 

  8. Greenberg, K.J.: Counter-radicalization via the internet. Ann. Am. Acad. Polit. Soc. Sci. 668, 165–179 (2016). https://doi.org/10.1177/0002716216672635

    Article  Google Scholar 

  9. Thompson, R.: Radicalization and the use of social media. J. Strateg. Secur. 4, 167–190 (2011). https://doi.org/10.5038/1944-0472.4.4.8

    Article  Google Scholar 

  10. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3

    Book  MATH  Google Scholar 

  11. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems - RecSys 2016, pp. 191–198. ACM Press, Boston (2016). https://doi.org/10.1145/2959100.2959190

  12. Digital 2019: Global Internet Use Accelerates. https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates. Accessed 26 Sept 2019

  13. Google Search Statistics - Internet Live Stats. https://www.internetlivestats.com/google-search-statistics/. Accessed 26 Sept 2019

  14. Search Engine Market Share Worldwide. https://gs.statcounter.com/search-engine-market-share. Accessed 26 Sept 2019

  15. Desjardins, J.: How Google retains more than 90% of market share. https://www.businessinsider.de/how-google-retains-more-than-90-of-market-share-2018-4. Accessed 26 Sept 2019

  16. Social Media Stats Worldwide. https://gs.statcounter.com/social-media-stats. Accessed 26 Sept 2019

  17. Spangler, T., Spangler, T.: YouTube Now Has 2 Billion Monthly Users, Who Watch 250 Million Hours on TV Screens Daily. https://variety.com/2019/digital/news/youtube-2-billion-users-tv-screen-watch-time-hours-1203204267/. Accessed 26 Sept 2019

  18. Datanyze: Online Video Platforms Market Share Report | Competitor Analysis | YouTube, Vimeo, Wistia, /market-share/online-video. Accessed 26 Sept 2019

    Google Scholar 

  19. Napoli, P.M.: Automated media: an institutional theory perspective on algorithmic media production and consumption: automated media. Commun. Theory 24, 340–360 (2014). https://doi.org/10.1111/comt.12039

    Article  Google Scholar 

  20. Napoli, P.M.: On automation in media industries: integrating algorithmic media production into media industries scholarship. Media Ind. 1 (2014)

    Google Scholar 

  21. Napoli, P.M.: Social media and the public interest: governance of news platforms in the realm of individual and algorithmic gatekeepers. Telecommun. Policy 39, 751–760 (2015). https://doi.org/10.1016/j.telpol.2014.12.003

    Article  Google Scholar 

  22. Schwarz, C., Gensing, P.: Fakes nach Tötungsdelikt: Das Trauerspiel von Chemnitz. http://faktenfinder.tagesschau.de/inland/chemnitz-fakes-trauerspiel-101.html. Accessed 22 May 2019

  23. Bangel, C.: Chemnitz-Prozess: Im Zweifel für den Mob (2019). https://www.zeit.de/gesellschaft/zeitgeschehen/2019-08/chemnitz-prozess-urteil-alaa-s-toedliche-messerattacke-rechtsextremismus

  24. Friedrichsen, G.: Das Chemnitz-Urteil stellt dem Rechtsstaat kein gutes Zeugnis aus (2019). https://www.welt.de/debatte/kommentare/plus199063453/Das-Chemnitz-Urteil-stellt-dem-Rechtsstaat-kein-gutes-Zeugnis-aus.html

  25. Gürgen, M.: Urteil im Chemnitz-Prozess: Kein Mittel gegen den rechten Mob (2019). https://taz.de/!5617542/

  26. Lakotta, B.: Urteil nach Bluttat von Chemnitz: Im Namen des zornigen Volkes (2019). https://www.spiegel.de/panorama/justiz/chemnitz-im-namen-des-zornigen-volkes-kommentar-zum-urteil-a-1283266.html

  27. Biermann, K., Grunert, J., Polke-Majewski, K., Schönian, V., Thurm, F., Eckert, T.: Video von Chemnitz: Wurden in Chemnitz Menschen gejagt? (2018). https://www.zeit.de/politik/deutschland/2018-09/chemnitz-video-sachsen-hans-georg-maassen-verfassungsschutz-angriff-mob-fakten

  28. Serrato, R.: #Chemnitz on YouTube. https://threadreaderapp.com/thread/1036349167394795527.html. Accessed 13 Sept 2018

  29. Lippmann, W., Noelle-Neumann, E.: Die öffentliche Meinung: Reprint des Publizistik-Klassikers. Brockmeyer, Bochum (1990)

    Google Scholar 

  30. Galtung, J., Ruge, M.H.: The structure of foreign news. J. Peace Res. 2, 64–91 (1965)

    Article  Google Scholar 

  31. Weischenberg, S.: Nachrichten-Journalismus: Anleitungen und Qualitäts-Standards für die Medienpraxis. (2001)

    Chapter  Google Scholar 

  32. White, D.M.: The “Gate Keeper”: a case study in the selection of news. J. Bull. 27, 383–390 (1950). https://doi.org/10.1177/107769905002700403

    Article  Google Scholar 

  33. Neuberger, C.: Welche Medien sind für unsere Meinungsbildung von Relevanz? Symposium Meinungsbildung und Meinungsvielfalt in Zeiten der Konvergenz“der KEK am., Berlin (2015)

    Google Scholar 

  34. Weeks, B.E., Holbert, R.L.: Predicting dissemination of news content in social media: a focus on reception, friending, and partisanship. J. Mass Commun. Q. 90, 212–232 (2013). https://doi.org/10.1177/1077699013482906

    Article  Google Scholar 

  35. McGee, M.: Facebook Cuts into Google’s Lead as Top Traffic Driver to Online News Sites [Report]. https://marketingland.com/facebook-cuts-googles-lead-top-traffic-driver-online-news-sites-report-75578. Accessed 27 May 2019

  36. Stöcker, C.: Terrornews aus Mumbai: Netzgeschwätz übertönt Augenzeugenberichte (2008). https://www.spiegel.de/netzwelt/web/terrornews-aus-mumbai-netzgeschwaetz-uebertoent-augenzeugenberichte-a-593173.html

  37. Freberg, K., Graham, K., McGaughey, K., Freberg, L.A.: Who are the social media influencers? A study of public perceptions of personality. Public Relat. Rev. 37, 90–92 (2011). https://doi.org/10.1016/j.pubrev.2010.11.001

    Article  Google Scholar 

  38. Trammell, K.D., Keshelashvili, A.: Examining the new influencers: a self-presentation study of a-list blogs. J. Mass Commun. Q. 82, 968–982 (2005). https://doi.org/10.1177/107769900508200413

    Article  Google Scholar 

  39. Jhonsa, E.: How Much Could Google’s YouTube Be Worth? Try More Than $100 Billion. https://www.thestreet.com/investing/youtube-might-be-worth-over-100-billion-14586599. Accessed 30 May 2019

  40. Katzenbach, C.: Die Ordnung der Algorithmen – Zur Automatisierung von Relevanz und Regulierung gesellschaftlicher Kommunikation. In: (Un)berechenbar? Algorithmen und Automatisierung in Staat und Gesellschaft, pp. 315–338 (2018)

    Google Scholar 

  41. Lischka, K., Stöcker, C.: The Digital Public. Discussion paper Ethics of Algorithms (2018). https://doi.org/10.11586/2017049

  42. Stieglitz, S., Dang-Xuan, L.: Emotions and information diffusion in social media—sentiment of microblogs and sharing behavior. J. Manag. Inf. Syst. 29, 217–248 (2013). https://doi.org/10.2753/MIS0742-1222290408

    Article  Google Scholar 

  43. Stieglitz, S., Dang-Xuan, L.: Impact and diffusion of sentiment in public communication on Facebook. In: ECIS 2012 Proceedings (2012)

    Google Scholar 

  44. Stöcker, C.: Bedeutung von Emotionen in den Sozialen Medien, Emotionalisierung durch Soziale Medien: Emotion bringt Reichweite? In: Besand, A., Overwien, B., Zorn, P. (eds.) Politische Bildung mit Gefühl. Bundeszentrale für politische Bildung, Bonn (2019)

    Google Scholar 

  45. Hölig, S., Hasebrink, U.: Reuters Institute Digital News Report 2018: Ergebnisse für Deutschland. Hans-Bredow-Institut für Medienforschung, Hamburg (2018)

    Google Scholar 

  46. Andrews, S., Ellis, D.A., Shaw, H., Piwek, L.: Beyond self-report: tools to compare estimated and real-world smartphone use. PLoS ONE 10, e0139004 (2015). https://doi.org/10.1371/journal.pone.0139004

    Article  Google Scholar 

  47. Andone, I., Błaszkiewicz, K., Eibes, M., Trendafilov, B., Montag, C., Markowetz, A.: How age and gender affect smartphone usage. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct - UbiComp 2016, pp. 9–12. ACM Press, Heidelberg (2016). https://doi.org/10.1145/2968219.2971451

  48. Oulasvirta, A., Rattenbury, T., Ma, L., Raita, E.: Habits make smartphone use more pervasive. Pers. Ubiquit. Comput. 16, 105–114 (2012). https://doi.org/10.1007/s00779-011-0412-2

    Article  Google Scholar 

  49. Samaha, M., Hawi, N.S.: Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 57, 321–325 (2016). https://doi.org/10.1016/j.chb.2015.12.045

    Article  Google Scholar 

  50. Haug, S., Castro, R.P., Kwon, M., Filler, A., Kowatsch, T., Schaub, M.P.: Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 4, 299–307 (2015). https://doi.org/10.1556/2006.4.2015.037

    Article  Google Scholar 

  51. Leslie, I.: The scientists who make apps addictive. https://www.1843magazine.com/features/the-scientists-who-make-apps-addictive Accessed 30 May 2019

  52. Fogg, B.J.: Persuasive Technology: Using Computers to Change What We think and Do. Morgan Kaufmann Publishers, Amsterdam, Boston (2003)

    Book  Google Scholar 

  53. Thorndike, E.L.: Animal intelligence: an experimental study of the associate processes in animals. Am. Psychol. 53, 1125–1127 (1998). https://doi.org/10.1037/0003-066X.53.10.1125

    Article  Google Scholar 

  54. Watson, J.B.: Psychology as the behaviorist views it. Psychol. Rev. 20, 158–177 (1913). https://doi.org/10.1037/h0074428

    Article  Google Scholar 

  55. Skinner, B.F.: The Behavior of Organisms: an Experimental Analysis. Copley Publishing Group, Acton (1991)

    Google Scholar 

  56. Bandura, A.: Social Learning Theory. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  57. Lagorio-Chafkin, C.: Inside Instagram’s Humble Beginnings. https://www.inc.com/30under30/2011/profile-kevin-systrom-mike-krieger-founders-instagram.html. Accessed 30 May 2019

  58. Eyal, N.: Hooked: How to Build Habit-Forming Products. Portfolio/Penguin, New York (2014)

    Google Scholar 

  59. Wu, T.: The Attention Merchants: The Epic Scramble to Get Inside Our Heads. Alfred A. Knopf, New York (2016)

    Google Scholar 

  60. Kahneman, D.: Thinking, Fast and Slow. Penguin Books, London (2012)

    Google Scholar 

  61. Evans, J.St.B.T.: Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol. 59, 255–278 (2008). https://doi.org/10.1146/annurev.psych.59.103006.093629

    Article  Google Scholar 

  62. Schmehl, K.: 7 der 10 erfolgreichsten Artikel über Angela Merkel auf Facebook sind Fake News. Buzzfeed.de

    Google Scholar 

  63. Wong, J.C.: Anti-vaxx propaganda has gone viral on Facebook. Pinterest has a cure (2019). https://www.theguardian.com/technology/2019/feb/20/pinterest-anti-vaxx-propaganda-search-facebook

  64. Sharma, M., Yadav, K., Yadav, N., Ferdinand, K.C.: Zika virus pandemic—analysis of Facebook as a social media health information platform. Am. J. Infect. Control 45, 301–302 (2017). https://doi.org/10.1016/j.ajic.2016.08.022

    Article  Google Scholar 

  65. Wilson, J.: Conspiracy theories like QAnon could fuel “extremist” violence, FBI says (2019). https://www.theguardian.com/us-news/2019/aug/01/conspiracy-theories-fbi-qanon-extremism

  66. Kozlowska, H.: Facebook is a perfect place for conspiracy theories like QAnon to evolve. https://qz.com/1348635/facebook-is-a-perfect-home-for-conspiracy-theories-like-qanon/. Accessed 26 Sept 2019

  67. Garb, R.: More transparency in customized search results (2008). https://googleblog.blogspot.de/2008/07/more-transparency-in-customized-search.html

  68. Dean, B.: Google’s 200 Ranking Factors: The Complete List. http://backlinko.com/google-ranking-factors. Accessed 05 Mar 2017

  69. Google: General Guidelines (2017). https://static.googleusercontent.com/media/www.google.com/de//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf

  70. Cadwalladr, C.: Google, democracy and the truth about internet search (2016). https://www.theguardian.com/technology/2016/dec/04/google-democracy-truth-internet-search-facebook

  71. Meyerson, E.: YouTube Now: Why We Focus on Watch Time. https://youtube-creators.googleblog.com/2012/08/youtube-now-why-we-focus-on-watch-time.html. Accessed 12 Sept 2018

  72. Lewis, P., McCormick, E.: How an ex-YouTube insider investigated its secret algorithm (2018). http://www.theguardian.com/technology/2018/feb/02/youtube-algorithm-election-clinton-trump-guillaume-chaslot

  73. Tufekci, Z.: Opinion | YouTube, the Great Radicalizer (2018). https://www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html

  74. Stöcker, C.: YouTube, Facebook & Co.: Sehend ins Verderben (2018). http://www.spiegel.de/wissenschaft/mensch/youtube-facebook-co-sehend-ins-verderben-kolumne-a-1192615.html

  75. Zhou, R., Khemmarat, S., Gao, L.: The impact of YouTube recommendation system on video views. In: Proceedings of the 10th Annual Conference on Internet Measurement - IMC 2010, p. 404. ACM Press, Melbourne (2010). https://doi.org/10.1145/1879141.1879193

  76. Allgaier, J.: Science and environmental communication on YouTube: strategically distorted communications in online videos on climate change and climate engineering. Front. Commun. 4, 36 (2019). https://doi.org/10.3389/fcomm.2019.00036

    Article  Google Scholar 

  77. Albright, J.: Untrue-Tube: Monetizing Misery and Disinformation. https://medium.com/@d1gi/untrue-tube-monetizing-misery-and-disinformation-388c4786cc3d. Accessed 26 Sept 2019

  78. Williamson, E.: Sandy Hook Families Gain in Defamation Suits Against Alex Jones (2019). https://www.nytimes.com/2019/02/07/us/politics/alex-jones-sandy-hook.html

  79. Golebiewski, M., Boyd, D.: Data Voids: Where Missing Data Can Easily Be Exploited. https://datasociety.net/output/data-voids-where-missing-data-can-easily-be-exploited/. Accessed 30 Sept 2019

  80. RKI - Bedeutung von Impfungen - Antworten des Robert Koch-Instituts und des Paul-Ehrlich-Instituts zu den 20 häufigsten Einwänden gegen das Impfen. https://www.rki.de/DE/Content/Infekt/Impfen/Bedeutung/Schutzimpfungen_20_Einwaende.html. Accessed 30 Sept 2019

  81. Hilfebereich für Facebook Media und Publisher. https://de-de.facebook.com/help/publisher/182222309230722. Accessed 30 Sept 2019

  82. Lu, D.: Facebook’s fact-checking process is too opaque to know if it’s working. https://www.newscientist.com/article/2211634-facebooks-fact-checking-process-is-too-opaque-to-know-if-its-working/. Accessed 30 Sept 2019

  83. Snopes pulls out of fact-checking partnership with Facebook. https://phys.org/news/2019-02-snopes-fact-checking-partnership-facebook.html. Accessed 30 Sept 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stöcker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stöcker, C. (2020). How Facebook and Google Accidentally Created a Perfect Ecosystem for Targeted Disinformation. In: Grimme, C., Preuss, M., Takes, F., Waldherr, A. (eds) Disinformation in Open Online Media. MISDOOM 2019. Lecture Notes in Computer Science(), vol 12021. Springer, Cham. https://doi.org/10.1007/978-3-030-39627-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39627-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39626-8

  • Online ISBN: 978-3-030-39627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics