Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 469 Accesses

Abstract

Semiconductor quantum optics is on the leap from the lab to real world applications. To advance the development of novel devices such as non-classical light sources and nanolasers based on semiconductor quantum dots, device engineers will need simulation tools that combine classical device physics with cavity quantum electrodynamics. This thesis is focused on the device scale modeling and numerical simulation of electrically driven quantum light sources based on semiconductor quantum dots. Therefore a broad range of different topics is treated and connected to methodically advance the state-of-the-art—from semi-classical device physics and elements of non-equilibrium thermodynamics to the theory of open quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandelow U, Gajewski H, Hünlich R (2005) Fabry–Perot lasers: thermodynamics-based modeling. In: Piprek J (ed) Optoelectronic devices, chap 3. Springer, New York, pp 63–85. https://doi.org/10.1007/0-387-27256-9_3

  2. Bandelow U, Hünlich R, Koprucki T (2003) Simulation of static and dynamic properties of edge-emitting multiple-quantum-well lasers. IEEE J Sel Top Quant 9(3):798–806. https://doi.org/10.1109/JSTQE.2003.818343

    Article  Google Scholar 

  3. Chow WW, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37(3):109–184. https://doi.org/10.1016/j.pquantelec.2013.04.001

    Article  ADS  Google Scholar 

  4. Chow WW, Jahnke F, Gies C (2014) Emission properties of nanolasers during the transition to lasing. Light-Sci Appl 3:e201. https://doi.org/10.1038/lsa.2014.82

    Article  ADS  Google Scholar 

  5. Gies C, Florian M, Steinhoff A, Jahnke F (2017) Theory of quantum light sources and cavity-QED emitters based on semiconductor quantum dots. In: Michler P (ed) Quantum dots for quantum information technologies. Springer Series in Nano-Optics and Nanophotonics, chap 1. Springer, Cham, pp 3–40 (2017). https://doi.org/10.1007/978-3-319-56378-7_1

    Chapter  Google Scholar 

  6. Gies C, Gericke F, Gartner P, Holzinger S, Hopfmann C, Heindel T, Wolters J, Schneider C, Florian M, Jahnke F, Höfling S, Kamp M, Reitzenstein S (2017) Strong light-matter coupling in the presence of lasing. Phys Rev A 96:023806. https://doi.org/10.1103/PhysRevA.96.023806

  7. Grupen M, Hess K (1998) Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J Quantum Electron 34(1):120–140. https://doi.org/10.1109/3.655016

    Article  ADS  Google Scholar 

  8. Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S (2015) Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 6:7662. https://doi.org/10.1038/ncomms8662

  9. Gu Q, Fainman Y (2017) Semiconductor nanolasers. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316275122

  10. Heindel T, Schneider C, Lermer M, Kwon SH, Braun T, Reitzenstein S, Höfling S, Kamp M, Forchel A (2010) Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett 96(1):011107. https://doi.org/10.1063/1.3284514

    Article  ADS  Google Scholar 

  11. Strauf S, Jahnke F (2011) Single quantum dot nanolaser. Laser Photonics Rev 5(5):607–633. https://doi.org/10.1002/lpor.201000039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kantner .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kantner, M. (2020). Summary and Outlook. In: Electrically Driven Quantum Dot Based Single-Photon Sources. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-39543-8_7

Download citation

Publish with us

Policies and ethics