Advertisement

Hybrid Simulation of an Electrically Driven Single-Photon Source

Chapter
  • 261 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter provides a proof-of-principle application of the hybrid modeling approach presented in the previous chapter. An electrically driven single-photon source based on a single QD embedded in a semiconductor pin-diode is investigated by numerical simulations. The numerical method introduced before is extended towards the hybrid model. Simulation results are presented for stationary and pulsed electrical excitation. A critical discussion of the numerical results and an outlook on possible extensions of the approach are given.

References

  1. 1.
    Albinus G, Gajewski H, Hünlich R (2002) Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2):367–383.  https://doi.org/10.1088/0951-7715/15/2/307ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baer N, Gartner P, Jahnke F (2004) Coulomb effects in semiconductor quantum dots. Eur Phys J B 42(2):231–237.  https://doi.org/10.1140/epjb/e2004-00375-6ADSCrossRefGoogle Scholar
  3. 3.
    Bandelow U, Gajewski H, Hünlich R (2005) Fabry–Perot lasers: thermodynamics-based modeling. In: Piprek J (ed) Optoelectronic devices, chap 3. Springer, New York, pp 63–85.  https://doi.org/10.1007/0-387-27256-9_3
  4. 4.
    Bandelow U, Hünlich R, Koprucki T (2003) Simulation of static and dynamic properties of edge-emitting multiple-quantum-well lasers. IEEE J Sel Top Quant 9(3):798–806.  https://doi.org/10.1109/JSTQE.2003.818343CrossRefGoogle Scholar
  5. 5.
    Baro M, Neidhardt H, Rehberg J (2005) Current coupling of drift-diffusion models and Schrödinger-Poisson systems: dissipative hybrid models. SIAM J Math Anal 37(3):941–981.  https://doi.org/10.1137/040611690MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bayer M, Ortner G, Stern O, Kuther A, Gorbunov AA, Forchel A, Hawrylak P, Fafard S, Hinzer K, Reinecke TL, Walck SN, Reithmaier JP, Klopf F, Schäfer F (2002) Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B 65(19):195315.  https://doi.org/10.1103/physrevb.65.195315ADSCrossRefGoogle Scholar
  7. 7.
    Bennett AJ, Patel RB, Shields AJ, Cooper K, Atkinson P, Nicoll CA, Ritchie DA (2008) Indistinguishable photons from a diode. Appl Phys Lett 92(19):193503.  https://doi.org/10.1063/1.2918841ADSCrossRefGoogle Scholar
  8. 8.
    Bonani F, Ghione G (2001) Noise in semiconductor devices—modeling and simulation. No. 7 in advanced microelectronics. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-662-04530-5CrossRefGoogle Scholar
  9. 9.
    Breuer HP, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  10. 10.
    Bulnes Cuetara G, Esposito M, Schaller G (2016) Quantum thermodynamics with degenerate eigenstate coherences. Entropy 18(12):447.  https://doi.org/10.3390/e18120447ADSCrossRefGoogle Scholar
  11. 11.
    Carmele A, Milde F, Dachner MR, Harouni MB, Roknizadeh R, Richter M, Knorr A (2010) Formation dynamics of an entangled photon pair: a temperature-dependent analysis. Phys Rev B 81(19):195319.  https://doi.org/10.1103/physrevb.81.195319ADSCrossRefGoogle Scholar
  12. 12.
    Chow WW, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37(3):109–184.  https://doi.org/10.1016/j.pquantelec.2013.04.001ADSCrossRefGoogle Scholar
  13. 13.
    Dachner MR, Malić E, Richter M, Carmele A, Kabuss J, Wilms A, Kim JE, Hartmann G, Wolters J, Bandelow U, Knorr A (2010) Theory of carrier and photon dynamics in quantum dot light emitters. Phys Status Solidi B 247(4):809–828.  https://doi.org/10.1002/pssb.200945433ADSCrossRefGoogle Scholar
  14. 14.
    Ferreira R, Bastard G (2015) Capture and relaxation in self-assembled semiconductor quantum dots. Morgan & Claypool Publishers, San Rafael, CA, pp 2053–2571.  https://doi.org/10.1088/978-1-6817-4089-8
  15. 15.
    Fischbach S, Schlehahn A, Thoma A, Srocka N, Gissibl T, Ristok S, Thiele S, Kaganskiy A, Strittmatter A, Heindel T, Rodt S, Herkommer A, Giessen H, Reitzenstein S (2017) Single quantum dot with microlens and 3d-printed micro-objective as integrated bright single-photon source. ACS Photonics 4(6):1327–1332.  https://doi.org/10.1021/acsphotonics.7b00253CrossRefGoogle Scholar
  16. 16.
    Florian M, Gies C, Gartner P, Jahnke F (2012) Improved antibunching by using high-excitation pulses from a single semiconductor quantum dot—a theoretical study. J Opt Soc Am B 29(2):A31.  https://doi.org/10.1364/josab.29.000a31ADSCrossRefGoogle Scholar
  17. 17.
    Gajewski H, Liero M, Nürnberg R, Stephan H (2016) WIAS-TeSCA—two-dimensional semi-conductor analysis package. WIAS Technical report No. 14Google Scholar
  18. 18.
    Gegg M, Richter M (2016) Efficient and exact numerical approach for many multi-level systems in open system CQED. New J Phys 18(4):043037.  https://doi.org/10.1088/1367-2630/18/4/043037CrossRefGoogle Scholar
  19. 19.
    Gies C, Florian M, Steinhoff A, Jahnke F (2017) Theory of quantum light sources and cavity-QED emitters based on semiconductor quantum dots. In: Michler P (ed) Quantum dots for quantum information technologies. Springer Series in Nano-Optics and Nanophotonics, chap 1. Springer, Cham, pp 3–40.  https://doi.org/10.1007/978-3-319-56378-7_1CrossRefGoogle Scholar
  20. 20.
    Gies C, Gericke F, Gartner P, Holzinger S, Hopfmann C, Heindel T, Wolters J, Schneider C, Florian M, Jahnke F, Höfling S, Kamp M, Reitzenstein S (2017) Strong light-matter coupling in the presence of lasing. Phys Rev A 96:023806.  https://doi.org/10.1103/PhysRevA.96.023806ADSCrossRefGoogle Scholar
  21. 21.
    Gies C, Wiersig J, Lorke M, Jahnke F (2007) Semiconductor model for quantum-dot-based microcavity lasers. Phys Rev A 75(1):013803.  https://doi.org/10.1103/PhysRevA.75.013803ADSCrossRefGoogle Scholar
  22. 22.
    Gilbert JR, Moler C, Schreiber R (1992) Sparse matrices in MATLAB: design and implementation. SIAM J Matrix Anal Appl 13(1):333–356.  https://doi.org/10.1137/0613024MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Grupen M, Hess K (1998) Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J Quantum Electron 34(1):120–140.  https://doi.org/10.1109/3.655016ADSCrossRefGoogle Scholar
  24. 24.
    Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S (2015) Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 6:7662.  https://doi.org/10.1038/ncomms8662ADSCrossRefGoogle Scholar
  25. 25.
    Haug H, Koch SW (2004) Quantum theory of the optical and electronic properties of semiconductors, 4th edn. World Scientific, Singapore.  https://doi.org/10.1142/5394
  26. 26.
    Kantner M (2020) Generalized Scharfetter–Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J Comput Phys 402:109091.  https://doi.org/10.1016/j.jcp.2019.109091MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kantner M (2019) Hybrid modeling of quantum light emitting diodes: self-consistent coupling of drift-diffusion, Schrödinger-Poisson, and quantum master equations. In: Proceedings of the SPIE photonics west: physics and simulation of optoelectronic devices XXVII, vol 10912. SPIE, p 109120U.  https://doi.org/10.1117/12.2515209
  28. 28.
    Kantner M, Bandelow U, Koprucki T, Wünsche HJ (2016) Modeling and simulation of injection dynamics for quantum dot based single-photon sources. In: Proceedings of the international conference on numerical simulation of optoelectronic devices, pp 219–220.  https://doi.org/10.1109/nusod.2016.7547005
  29. 29.
    Kantner M, Mittnenzweig M, Koprucki T (2017) Hybrid quantum-classical modeling of quantum dot devices. Phys Rev B 96(20):205301.  https://doi.org/10.1103/PhysRevB.96.205301ADSCrossRefGoogle Scholar
  30. 30.
    Koprucki T, Wilms A, Knorr A, Bandelow U (2011) Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt Quantum Electron 42(11):777–783.  https://doi.org/10.1007/s11082-011-9479-2CrossRefGoogle Scholar
  31. 31.
    Levinstein M, Rumyantsev S, Shur M (eds) (1996) Handbook series on semiconductor parameters—ternary and quaternary III–V compounds, vol 2. World Scientific, Singapore.  https://doi.org/10.1142/2046-vol2CrossRefGoogle Scholar
  32. 32.
    Lodahl P, Mahmoodian S, Stobbe S (2015) Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 87(2):347–400.  https://doi.org/10.1103/revmodphys.87.347ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Lorke M, Jahnke F, Chow WW (2007) Excitation dependences of gain and carrier-induced refractive index change in quantum-dot lasers. Appl Phys Lett 90(5):051112.  https://doi.org/10.1063/1.2437670ADSCrossRefGoogle Scholar
  34. 34.
    Michler P (2009) Quantum dot single-photon sources. In: Michler P (ed) Single semiconductor quantum dots, nanoscience and technology, chap 6. Springer, Berlin, Heidelberg, pp 185–225.  https://doi.org/10.1007/978-3-540-87446-1_6CrossRefGoogle Scholar
  35. 35.
    Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, İmamoğlu A (2000) A quantum dot single-photon turnstile device. Science 290(5500):2282–2285.  https://doi.org/10.1126/science.290.5500.2282ADSCrossRefGoogle Scholar
  36. 36.
    Munteanu D, Autran JL (2012) A 2-D/3-D Schrödinger–Poisson drift-diffusion numerical simulation of radially-symmetric nanowire MOSFETs. In: Peng X (ed) Nanowires, chap 15. IntechOpen, London, pp 341–370.  https://doi.org/10.5772/52587Google Scholar
  37. 37.
    Palankovski V, Quay R (2004) Analysis and simulation of heterostructure devices. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-0560-3CrossRefGoogle Scholar
  38. 38.
    Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69(1–2):37–38.  https://doi.org/10.1103/physrev.69.37ADSCrossRefGoogle Scholar
  39. 39.
    Ritter S, Gartner P, Gies C, Jahnke F (2010) Emission properties and photon statistics of a single quantum dot laser. Opt Express 18(10):9909–9921.  https://doi.org/10.1364/oe.18.009909ADSCrossRefGoogle Scholar
  40. 40.
    Schaller G (2014) Open quantum systems far from equilibrium. Lecture notes in physics, vol 881. Springer, ChamCrossRefGoogle Scholar
  41. 41.
    Schlehahn A, Krüger L, Gschrey M, Schulze JH, Rodt S, Strittmatter A, Heindel T, Reitzenstein S (2015) Operating single quantum emitters with a compact Stirling cryocooler. Rev Sci Instrum 86:013113.  https://doi.org/10.1063/1.4906548ADSCrossRefGoogle Scholar
  42. 42.
    Schnauber P, Schall J, Bounouar S, Höhne T, Park SI, Ryu GH, Heindel T, Burger S, Song JD, Rodt S, Reitzenstein S (2018) Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography. Nano Lett 18(4):2336–2342.  https://doi.org/10.1021/acs.nanolett.7b05218ADSCrossRefGoogle Scholar
  43. 43.
    Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511813993
  44. 44.
    Steiger S, Veprek RG, Witzigmann B (2008) Unified simulation of transport and luminescence in optoelectronic nanostructures. J Comput Electron 7(4):509–520.  https://doi.org/10.1007/s10825-008-0261-zCrossRefGoogle Scholar
  45. 45.
    Strauf S, Jahnke F (2011) Single quantum dot nanolaser. Laser Photonics Rev 5(5):607–633.  https://doi.org/10.1002/lpor.201000039CrossRefGoogle Scholar
  46. 46.
    Tischler JG, Bracker AS, Gammon D, Park D (2002) Fine structure of trions and excitons in single GaAs quantum dots. Phys Rev B 66(8):081310.  https://doi.org/10.1103/PhysRevB.66.081310ADSCrossRefGoogle Scholar
  47. 47.
    Vogel W, Welsch DG (2006) Quantum optics, 3rd edn. Wiley, Weinheim.  https://doi.org/10.1002/3527608524
  48. 48.
    Weisskopf V, Wigner E (1930) Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z Phys 63(1–2):54–73.  https://doi.org/10.1007/bf01336768ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    Wilms A, Mathé P, Schulze F, Koprucki T, Knorr A, Bandelow U (2013) Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials. Phys Rev B 88:235421.  https://doi.org/10.1103/PhysRevB.88.235421ADSCrossRefGoogle Scholar
  50. 50.
    Wojs A, Hawrylak P, Fafard S, Jacak L (1996) Electronic structure and magneto-optics of self-assembled quantum dots. Phys Rev B 54(8):5604–5608.  https://doi.org/10.1103/physrevb.54.5604ADSCrossRefGoogle Scholar
  51. 51.
    Yuan Z, Kardynal BE, Stevenson RM, Shields AJ, Lobo CJ, Cooper K, Beattie NS, Ritchie DA, Pepper M (2002) Electrically driven single-photon source. Science 295(5552):102–105.  https://doi.org/10.1126/science.1066790ADSCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)Leibniz Institute in Forschungsverbund Berlin e. V.BerlinGermany

Personalised recommendations