Advertisement

Current Injection into Oxide-Confined Single-Photon Emitting Diodes

Chapter
  • 258 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the van Roosbroeck system is applied to investigate the current flow in an electrically driven QD-based single-photon emitting diode. The device features an oxidized aperture for the site-controlled QD nucleation, which is also intended to improve the confinement of the injection current. The experimentally recorded electroluminescence, however, shows the counterintuitive light emission from parasitic QDs far away from the aperture, which contradicts the expected current confining property. The experimental observations are reproduced by a theoretical model, that predicts a rapid lateral current spreading above the oxide layer. This phenomenon is thoroughly investigated and traced back to the absence of carrier recombination above the oxide layer in the low-injection regime at cryogenic temperatures. Finally, by a revision of the doping design, a superior current confinement is achieved, that enables the highly selective excitation of a small domain above the aperture—in particular it allows for the electrical pumping of single QDs. This is evidenced by numerical simulations under stationary and pulsed excitation.

References

  1. 1.
    Bayer M, Ortner G, Stern O, Kuther A, Gorbunov AA, Forchel A, Hawrylak P, Fafard S, Hinzer K, Reinecke TL, Walck SN, Reithmaier JP, Klopf F, Schäfer F (2002) Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B 65(19):195315.  https://doi.org/10.1103/physrevb.65.195315ADSCrossRefGoogle Scholar
  2. 2.
    Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, ChichesterGoogle Scholar
  3. 3.
    Buckley S, Rivoire K, Vučković J (2012) Engineered quantum dot single-photon sources. Rep Prog Phys 75(12):126503.  https://doi.org/10.1088/0034-4885/75/12/126503ADSCrossRefGoogle Scholar
  4. 4.
    Chow WW, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37(3):109–184.  https://doi.org/10.1016/j.pquantelec.2013.04.001ADSCrossRefGoogle Scholar
  5. 5.
    Dawson P, Rubel O, Baranovskii SD, Pierz K, Thomas P, Göbel EO (2005) Temperature dependent optical properties of InAs/GaAs quantum dots: Independent carrier versus exciton relaxation. Phys Rev B 72(23):235301.  https://doi.org/10.1103/PhysRevB.72.235301ADSCrossRefGoogle Scholar
  6. 6.
    Ferreira R, Bastard G (1999) Phonon-assisted capture and intradot Auger relaxation in quantum dots. Appl Phys Lett 74(19):2818.  https://doi.org/10.1063/1.124024ADSCrossRefGoogle Scholar
  7. 7.
    Gioannini M, Cedola AP, Santo ND, Bertazzi F, Cappelluti F (2013) Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J Photovolt 3(4):1271–1278.  https://doi.org/10.1109/jphotov.2013.2270345CrossRefGoogle Scholar
  8. 8.
    Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74(1):145.  https://doi.org/10.1103/RevModPhys.74.145ADSCrossRefGoogle Scholar
  9. 9.
    Gready D, Eisenstein G (2013) Carrier dynamics and modulation capabilities of 1.55-\(\upmu \)m quantum-dot lasers. IEEE J Sel Top Quant 19(4):1900307–1900307.  https://doi.org/10.1109/jstqe.2013.2238610ADSCrossRefGoogle Scholar
  10. 10.
    Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S (2015) Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 6:7662.  https://doi.org/10.1038/ncomms8662ADSCrossRefGoogle Scholar
  11. 11.
    Heindel T, Kessler CA, Rau M, Schneider C, Fürst M, Hargart F, Schulz WM, Eichfelder M, Roßbach R, Nauerth S, Lermer M, Weier H, Jetter M, Kamp M, Reitzenstein S, Höfling S, Michler P, Weinfurter H, Forchel A (2012) Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New J Phys 14(8):083001.  https://doi.org/10.1088/1367-2630/14/8/083001CrossRefGoogle Scholar
  12. 12.
    Heinrichsdorff F (1998) MOCVD growth and laser applications of In(Ga)As/GaAs quantum dots. PhD thesis, Technical University BerlinGoogle Scholar
  13. 13.
    Kaganskiy A, Fischbach S, Strittmatter A, Rodt S, Heindel T, Reitzenstein S (2018) Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt Commun 413:162–166.  https://doi.org/10.1016/j.optcom.2017.12.032ADSCrossRefGoogle Scholar
  14. 14.
    Kantner M, Bandelow U, Koprucki T, Schulze JH, Strittmatter A, Wünsche HJ (2016) Efficient current injection into single quantum dots through oxide-confined p-n-diodes. IEEE Trans Electron Devices 63(5):2036–2042.  https://doi.org/10.1109/ted.2016.2538561ADSCrossRefGoogle Scholar
  15. 15.
    Kavokin KV (2003) Fine structure of the quantum-dot trion. Phys Status Solidi A 195(3):592–595.  https://doi.org/10.1002/pssa.200306157ADSCrossRefGoogle Scholar
  16. 16.
    Kolarczik M, Owschimikow N, Herzog B, Buchholz F, Kaptan YI, Woggon U (2015) Exciton dynamics probe the energy structure of a quantum dot-in-a-well system: the role of Coulomb attraction and dimensionality. Phys Rev B 91(23):235310.  https://doi.org/10.1103/PhysRevB.91.235310ADSCrossRefGoogle Scholar
  17. 17.
    Koprucki T, Wilms A, Knorr A, Bandelow U (2011) Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt Quantum Electron 42(11):777–783.  https://doi.org/10.1007/s11082-011-9479-2CrossRefGoogle Scholar
  18. 18.
    Magnúsdóttir I, Uskov AV, Bischoff S, Tromborg B, Mørk J (2002) One- and two-phonon capture processes in quantum dots. J Appl Phys 92(10):5982.  https://doi.org/10.1063/1.1512694ADSCrossRefGoogle Scholar
  19. 19.
    Michalzik R (2013) VCSEL fundamentals. In: Michalzik R (ed) VCSELs—fundamentals, technology and applications of vertical-cavity surface-emitting lasers, Springer series in optical sciences, vol 166, chap 2. Springer, Berlin, Heidelberg, pp 19–75.  https://doi.org/10.1007/978-3-642-24986-0_2Google Scholar
  20. 20.
    Nielsen TR, Gartner P, Jahnke F (2004) Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys Rev B 69:235314.  https://doi.org/10.1103/PhysRevB.69.235314ADSCrossRefGoogle Scholar
  21. 21.
    Palankovski V, Quay R (2004) Analysis and simulation of heterostructure devices. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-0560-3CrossRefGoogle Scholar
  22. 22.
    Santori C, Fattal D, Yamamoto Y (2010) Single-photon devices and applications. Wiley, WeinheimGoogle Scholar
  23. 23.
    Strittmatter A, Holzbecher A, Schliwa A, Schulze JH, Quandt D, Germann TD, Dreismann A, Hitzemann O, Stock E, Ostapenko IA, Rodt S, Unrau W, Pohl UW, Hoffmann A, Bimberg D, Haisler VA (2012) Site-controlled quantum dot growth on buried oxide stressor layers. Phys Status Solidi A 209(12):2411–2420.  https://doi.org/10.1002/pssa.201228407ADSCrossRefGoogle Scholar
  24. 24.
    Strittmatter A, Schliwa A, Schulze JH, Germann TD, Dreismann A, Hitzemann O, Stock E, Ostapenko IA, Rodt S, Unrau W, Pohl UW, Hoffmann A, Bimberg D, Haisler VA (2012) Lateral positioning of InGaAs quantum dots using a buried stressor. Appl Phys Lett 100(9):093111.  https://doi.org/10.1063/1.3691251ADSCrossRefGoogle Scholar
  25. 25.
    Switaiski T, Woggon U, Alden Angeles DE, Hoffmann A, Schulze JH, Germann TD, Strittmatter A, Pohl UW (2013) Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots. Phys Rev B 88(3):035314.  https://doi.org/10.1103/physrevb.88.035314ADSCrossRefGoogle Scholar
  26. 26.
    Tischler JG, Bracker AS, Gammon D, Park D (2002) Fine structure of trions and excitons in single GaAs quantum dots. Phys Rev B 66(8):081310.  https://doi.org/10.1103/PhysRevB.66.081310ADSCrossRefGoogle Scholar
  27. 27.
    Unrau W (2015) Realisierung einer elektrisch betriebenen Einzelphotonenquelle mit verspannungsinduziert platzierten Quantenpunkten. PhD thesis, Technical University Berlin.  https://doi.org/10.14279/depositonce-4396
  28. 28.
    Unrau W, Quandt D, Schulze JH, Heindel T, Germann TD, Hitzemann O, Strittmatter A, Reitzenstein S, Pohl UW, Bimberg D (2012) Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl Phys Lett 101(21):211119.  https://doi.org/10.1063/1.4767525ADSCrossRefGoogle Scholar
  29. 29.
    Wilms A, Mathé P, Schulze F, Koprucki T, Knorr A, Bandelow U (2013) Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials. Phys Rev B 88:235421.  https://doi.org/10.1103/PhysRevB.88.235421ADSCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)Leibniz Institute in Forschungsverbund Berlin e. V.BerlinGermany

Personalised recommendations