Advertisement

Numerical Simulation of Carrier Transport at Cryogenic Temperatures

Chapter
  • 280 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter provides an introduction to the finite volume Scharfetter–Gummel method for the multi-dimensional numerical simulation of the van Roosbroeck system. The scope of this thesis is the numerical simulation of charge transport in quantum light sources based on InGaAs-QDs, which are typically operated at cryogenic temperatures. This requires an extension of the standard discretization scheme towards an accurate consideration of Fermi–Dirac statistics, to properly describe the strong degeneration effects that arise in the electron-hole gas at extremely low temperatures. In the recent years, several generalizations of the classical Scharfetter–Gummel discretization scheme for Fermi–Dirac statistics have been proposed, which are compared and assessed. At cryogenic temperatures, the discrete van Roosbroeck system is subject to serious convergence issues and numerical underflow using the standard continuation scheme. The problem is investigated in detail and is traced back to an ill-conditioned Jacobian matrix. This observation leads to the revision of the standard continuation routine towards a new temperature-embedding method.

References

  1. 1.
    Bandelow U, Gajewski H, Hünlich R (2005) Fabry–Perot lasers: thermodynamics-based modeling. In: Piprek J (ed) Optoelectronic devices, chap. 3. Springer, New York, pp 63–85.  https://doi.org/10.1007/0-387-27256-9_3
  2. 2.
    Bank RE, Coughran WM Jr, Cowsar LC (1998) The finite volume Scharfetter-Gummel method for steady convection diffusion equations. Comput Visual Sci 1(3):123–136.  https://doi.org/10.1007/s007910050012CrossRefzbMATHGoogle Scholar
  3. 3.
    Bessemoulin-Chatard M (2012) A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer Math 121(4):637–670.  https://doi.org/10.1007/s00211-012-0448-xMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blakemore JS (1982) Approximations for Fermi-Dirac integrals, especially the function \(F_{1/2}(\eta )\) used to describe electron density in a semiconductor. Solid-State Electron 25(11):1067–1076.  https://doi.org/10.1016/0038-1101(82)90143-5ADSCrossRefGoogle Scholar
  5. 5.
    Brezzi F, Marini LD, Pietra P (1989) Numerical simulation of semiconductor devices. Comput Methods Appl Mech Eng 75(1–3):493–514.  https://doi.org/10.1016/0045-7825(89)90044-3ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang TY, Izabelle A (1989) Full range analytic approximations for Fermi energy and Fermi-Dirac integral \(F_{-1/2}\) in terms of \(F_{1/2}\). J Appl Phys 65(5):2162–2164.  https://doi.org/10.1063/1.342847ADSCrossRefGoogle Scholar
  7. 7.
    Cogenda Pte Ltd. (2017) Genius semiconductor device simulator: reference manual. Version 1.9.0Google Scholar
  8. 8.
    Davis TA (2004) Algorithm 832: UMFPACK v4.3–an unsymmetric-pattern multifrontal method. ACM Trans Math Soft 30(2):196–199.  https://doi.org/10.1145/992200.992206MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deuflhard P (2004) Newton methods for nonlinear problems: affine invariance and adaptive algorithms, vol 35. Springer series in computational mathematics, Springer, BerlinzbMATHGoogle Scholar
  10. 10.
    Doan DH, Farrell P, Fuhrmann J, Kantner M, Koprucki T, Rotundo N (2016) ddfermi–a drift-diffusion simulation tool.  https://doi.org/10.20347/WIAS.SOFTWARE.DDFERMI
  11. 11.
    Eymard R, Fuhrmann J, Gärtner K (2006) A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer Math 102(3):463–495.  https://doi.org/10.1007/s00211-005-0659-5MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. In: Ciarlet P, Lions J (eds) Handbook of numerical analysis. Handbook of numerical analysis, vol 7. Elsevier, pp 713–1018.  https://doi.org/10.1016/S1570-8659(00)07005-8Google Scholar
  13. 13.
    Farrell P, Koprucki T, Fuhrmann J (2017) Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics. J Comput Phys 346:497–513.  https://doi.org/10.1016/j.jcp.2017.06.023ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Farrell P, Patriarca M, Fuhrmann J, Koprucki T (2018) Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi-Dirac and Gauss-Fermi statistics. Opt Quantum Electron 50:101.  https://doi.org/10.1007/s11082-018-1349-8CrossRefGoogle Scholar
  15. 15.
    Farrell P, Rotundo N, Doan DH, Kantner M, Fuhrmann J, Koprucki T (2017) Drift-diffusion models. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, chap. 50, vol 2. CRC Press, Taylor & Francis Group, Boca Raton, pp 733–771.  https://doi.org/10.4324/9781315152318-25CrossRefGoogle Scholar
  16. 16.
    Fuhrmann J (2015) Comparison and numerical treatment of generalised Nernst-Planck models. Comput Phys Commun 196:166–178.  https://doi.org/10.1016/j.cpc.2015.06.004ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gajewski H (1993) Analysis und Numerik von Ladungstransport in Halbleitern. WIAS Report No 6Google Scholar
  18. 18.
    Gajewski H, Gärtner K (1992) On the iterative solution of van Roosbroeck’s equations. J Appl Math Mech 72(1):19–28.  https://doi.org/10.1002/zamm.19920720103MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gajewski H, Gärtner K (1996) On the discretization of van Roosbroeck’s equations with magnetic field. J Appl Math Mech 76(5):247–264.  https://doi.org/10.1002/zamm.19960760502MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gajewski H, Liero M, Nürnberg R, Stephan H (2016) WIAS-TeSCA-Two-dimensional semi-conductor analysis package. WIAS Technical Report No 14Google Scholar
  21. 21.
    Gärtner K (2009) Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids. SIAM J Sci Comput 31(2):1347–1362.  https://doi.org/10.1137/070710950MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gärtner K (2015) Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions. J Comput Electron 14(3):773–787.  https://doi.org/10.1007/s10825-015-0712-2CrossRefGoogle Scholar
  23. 23.
    Guibas LJ, Knuth DE, Sharir M (1992) Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7(1):381–413.  https://doi.org/10.1007/BF01758770MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gummel HK (1964) A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans Electron Devices 11(10):455–465.  https://doi.org/10.1109/T-ED.1964.15364ADSCrossRefGoogle Scholar
  25. 25.
    Hager WW (1984) Condition estimates. SIAM J Sci Stat Comp 5(2):311–316.  https://doi.org/10.1137/0905023MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Harris JW, Stöcker H (1998) Handbook of mathematics and computational science. Springer, New York.  https://doi.org/10.1007/978-1-4612-5317-4CrossRefzbMATHGoogle Scholar
  27. 27.
    Higham NJ, Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J Matrix Anal Appl 21:1185–1201.  https://doi.org/10.1137/S0895479899356080MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Joyce WB, Dixon RW (1977) Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl Phys Lett 31(5):354–356.  https://doi.org/10.1063/1.89697ADSCrossRefGoogle Scholar
  29. 29.
    Jüngel A (1995) Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. J Appl Math Mech 75(10):783–799.  https://doi.org/10.1002/zamm.19950751016MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kantner M (2020) Generalized Scharfetter–Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J Comput Phys 402:109091.  https://doi.org/10.1016/j.jcp.2019.109091MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kantner M, Koprucki T (2016) Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures. Opt Quantum Electron 48(12):543.  https://doi.org/10.1007/s11082-016-0817-2CrossRefGoogle Scholar
  32. 32.
    Koprucki T, Gärtner K (2013) Discretization scheme for drift-diffusion equations with strong diffusion enhancement. Opt Quantum Electron 45(7):791–796.  https://doi.org/10.1007/s11082-013-9673-5CrossRefGoogle Scholar
  33. 33.
    Koprucki T, Kantner M, Fuhrmann J, Gärtner K (2014) On modifications of the Scharfetter–Gummel scheme for drift-diffusion equations with Fermi-like statistical distribution functions. In: Proceedings of the international conference numerical simulation of optoelectronic devices, pp 155–156.  https://doi.org/10.1109/NUSOD.2014.6935403
  34. 34.
    Koprucki T, Rotundo N, Farrell P, Doan DH, Fuhrmann J (2015) On thermodynamic consistency of a Scharfetter-Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement. Opt Quantum Electron 47(6):1327–1332.  https://doi.org/10.1007/s11082-014-0050-9CrossRefGoogle Scholar
  35. 35.
    Lax P, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13(2):217–237.  https://doi.org/10.1002/cpa.3160130205CrossRefzbMATHGoogle Scholar
  36. 36.
    Limache AC, Idelsohn SR (2007) On the development of finite volume methods for computational solid mechanics. Mecánica Computacional 26:827–843Google Scholar
  37. 37.
    Markovich PA (1986) The stationary semiconductor device equations. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-3678-2CrossRefGoogle Scholar
  38. 38.
    van Mensfoort SLM, Coehoorn R (2008) Effect of gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys Rev B 78(8):085207.  https://doi.org/10.1103/PhysRevB.78.085207ADSCrossRefGoogle Scholar
  39. 39.
    Nilsson NG (1973) An accurate approximation of the generalized Einstein relation for degenerate semiconductors. Phys Status Solidi A 19(1):75–78.  https://doi.org/10.1002/pssa.2210190159ADSCrossRefGoogle Scholar
  40. 40.
    Palankovski V, Quay R (2004) Analysis and simulation of heterostructure devices. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-0560-3CrossRefGoogle Scholar
  41. 41.
    Purbo OW, Cassidy DT, Chisholm SH (1989) Numerical model for degenerate and heterostructure semiconductor devices. J Appl Phys 66(10):5078–5082.  https://doi.org/10.1063/1.343733ADSCrossRefGoogle Scholar
  42. 42.
    Richey DM, Cressler JD, Jaeger RC (1994) Numerical simulation of SiGe HBT’s at cryogenic temperatures. J Phys IV France 04(C6):C6–127–C6–32.  https://doi.org/10.1051/jp4:1994620Google Scholar
  43. 43.
    Saad Y (2003) Iterative methods for sparse linear systems. SIAM.  https://doi.org/10.1137/1.9780898718003
  44. 44.
    Scharfetter DL, Gummel HK (1969) Large-signal analysis of a silicon Read diode oscillator. IEEE Trans Electron Devices 16(1):64–77.  https://doi.org/10.1109/t-ed.1969.16566ADSCrossRefGoogle Scholar
  45. 45.
    Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst 20(3):475–487.  https://doi.org/10.1016/j.future.2003.07.011CrossRefzbMATHGoogle Scholar
  46. 46.
    Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-8752-4CrossRefGoogle Scholar
  47. 47.
    Shah P, Mitin V, Grupen M, Song GH, Hess K (1996) Numerical simulation of wide band-gap AlGaN/InGaN light-emitting diodes for output power characteristics and emission spectra. J Appl Phys 79(5):2755.  https://doi.org/10.1063/1.361148ADSCrossRefGoogle Scholar
  48. 48.
    Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Lecture notes in computer science, vol 1148. Springer, Berlin, pp 203–222.  https://doi.org/10.1007/BFb0014497CrossRefGoogle Scholar
  49. 49.
    Si H, Gärtner K, Fuhrmann J (2010) Boundary conforming delaunay mesh generation. Comput Math Math Phys 50(1):38–53.  https://doi.org/10.1134/S0965542510010069MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Silvaco International (2016) Atlas User’s Manual. Santa Clara, CAGoogle Scholar
  51. 51.
    Stodtmann S, Lee RM, Weiler CKF, Badinski A (2012) Numerical simulation of organic semiconductor devices with high carrier densities. J Appl Phys 112(11):114909.  https://doi.org/10.1063/1.4768710ADSCrossRefGoogle Scholar
  52. 52.
    Inc Synopsys (2010) Sentaurus device userguide. Mountain View, CAGoogle Scholar
  53. 53.
    Van Cong H, Debiais G (1993) A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J Appl Phys 73(3):1545–1546.  https://doi.org/10.1063/1.353232ADSCrossRefGoogle Scholar
  54. 54.
    Yu Z, Chen D, So L, Dutton RW (1994) PISCES-2ET 2D device simulator. Technical Report, Integrated Circuits Laboratory, Stanford University, StanfordGoogle Scholar
  55. 55.
    Zuras D, Cowlishaw M (2008) IEEE standard for floating-point arithmetic. Technical Report, IEEE Computer Society, New York.  https://doi.org/10.1109/IEEESTD.2008.4610935CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)Leibniz Institute in Forschungsverbund Berlin e. V.BerlinGermany

Personalised recommendations