Advertisement

Semi-classical Charge Transport in Semiconductor Devices

Chapter
  • 296 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter gives an introduction to the semi-classical modeling of charge transport in semiconductor devices based on the van Roosbroeck system. The model equations are explained in detail, including a survey on boundary conditions, recombination rate models, carrier and current density expressions. The focus of this thesis is on the modeling of charge transport in quantum optical devices, that are typically operated at extremely low temperatures. Therefore, a particular focus is put on the thorough inclusion of degeneration effects due to Fermi–Dirac statistics in all relevant parts of the model system–ranging from nonlinear diffusion to boundary conditions and a generalized structure of the standard recombination rate models. The approximations underlying the van Roosbroeck system are discussed by outlining its derivation from the semi-classical Boltzmann transport equation. Finally, the chapter provides a detailed discussion of the van Roosbroeck system from the viewpoint of non-equilibrium thermodynamics. The consistency with fundamental laws of thermodynamics is regarded as a major principle for the construction of a hybrid quantum-classical model system in a later chapter.

References

  1. 1.
    Albinus G (1996) Thermodynamics of energy models of semiconductor devices. J Appl Math Mech (ICIAM/GAMM 95) 76:289–292.  https://doi.org/10.1002/zamm.19960761208
  2. 2.
    Albinus G, Gajewski H, Hünlich R (2002) Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2):367–383.  https://doi.org/10.1088/0951-7715/15/2/307ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bandelow U, Gajewski H, Hünlich R (2005) Fabry–Perot lasers: thermodynamics-based modeling. In: Piprek J (ed) Optoelectronic devices, chap. 3. Springer, New York, pp. 63–85.  https://doi.org/10.1007/0-387-27256-9_3
  4. 4.
    Beattie AR, Landsberg PT (1959) Auger effect in semiconductors. P R Soc Lond A Math 249(1256):16–29.  https://doi.org/10.1098/rspa.1959.0003ADSCrossRefGoogle Scholar
  5. 5.
    Blakemore JS (1982) Approximations for Fermi-Dirac integrals, especially the function \(F_{1/2}(\eta )\) used to describe electron density in a semiconductor. Solid-State Electron. 25(11):1067–1076.  https://doi.org/10.1016/0038-1101(82)90143-5ADSCrossRefGoogle Scholar
  6. 6.
    Chelikowsky JR, Cohen ML (1976) Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys Rev B 14(2):556–582.  https://doi.org/10.1103/PhysRevB.14.556ADSCrossRefGoogle Scholar
  7. 7.
    Chow WW, Koch SW, Sargent III, M (1994) Semiconductor-laser physics. Springer, Berlin.  https://doi.org/10.1007/978-3-642-61225-1CrossRefGoogle Scholar
  8. 8.
    Chuang SL (2009) Physics of photonic devices, 2nd edn. Wiley, HobokenGoogle Scholar
  9. 9.
    Cogenda Pte Ltd (2017) Genius semiconductor device simulator: reference manual. Version 1.9.0Google Scholar
  10. 10.
    Doan DH, Farrell P, Fuhrmann J, Kantner M, Koprucki T, Rotundo N (2016) ddfermi–A drift-diffusion simulation tool.  https://doi.org/10.20347/WIAS.SOFTWARE.DDFERMI
  11. 11.
    Engelhardt AP, Kolb JS, Roemer F, Weichmann U, Moench H, Witzigmann B (2015) Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers. Opt Eng 54(1):016107–016107.  https://doi.org/10.1117/1.OE.54.1.016107ADSCrossRefGoogle Scholar
  12. 12.
    Engl WL, Dirks HK, Meinerzhagen B (1983) Device modeling. Proc IEEE 71(1):10–33.  https://doi.org/10.1109/PROC.1983.12524ADSCrossRefGoogle Scholar
  13. 13.
    Farrell P, Rotundo N, Doan DH, Kantner M, Fuhrmann J, Koprucki T (2017) Drift-diffusion models. In: Piprek J(ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, chap. 50, vol. 2. CRC Press, Taylor & Francis Group, Boca Raton, pp 733–771.  https://doi.org/10.4324/9781315152318-25CrossRefGoogle Scholar
  14. 14.
    Gajewski H (1985) On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. J Appl Math Mech 65(2):101–108.  https://doi.org/10.1002/zamm.19850650210MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gajewski H, Gärtner K (1996) On the discretization of van Roosbroeck’s equations with magnetic field. J Appl Math Mech 76(5):247–264.  https://doi.org/10.1002/zamm.19960760502MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gajewski H, Gröger K (1986) On the basic equations for carrier transport in semiconductors. J Math Anal Appl 113(1):12–35.  https://doi.org/10.1016/0022-247X(86)90330-6MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gajewski H, Liero M, Nürnberg R, Stephan H (2016) WIAS-TeSCA-Two-dimensional semi-conductor analysis package. WIAS Technical Report No. 14Google Scholar
  18. 18.
    Gärtner K (2007) DEPFET sensors, a test case to study 3D effects. J Comput Electron 6(1–3):275–278.  https://doi.org/10.1007/s10825-006-0126-2CrossRefGoogle Scholar
  19. 19.
    Goudon T, Miljanović V, Schmeiser C (2007) On the Shockley-Read-Hall model: generation-recombination in semiconductors. SIAM J Appl Math 67(4):1183–1201.  https://doi.org/10.1137/060650751MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Grasser T, Tang TW, Kosina H, Selberherr S (2003) A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc IEEE 91(2):251–274.  https://doi.org/10.1109/JPROC.2002.808150CrossRefGoogle Scholar
  21. 21.
    de Groot SR, Mazur P (1984) Non-equilibrium Thermodynamics. Dover Publications, New YorkzbMATHGoogle Scholar
  22. 22.
    Grundmann M (2006) Physics of semiconductors–an introduction including nanophysics and applications. Springer, Berlin.  https://doi.org/10.1007/978-3-642-13884-3CrossRefGoogle Scholar
  23. 23.
    Grupen M, Hess K (1998) Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J Quantum Electron 34(1):120–140.  https://doi.org/10.1109/3.655016ADSCrossRefGoogle Scholar
  24. 24.
    Gummel HK (1964) A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans Electron Devices 11(10):455–465.  https://doi.org/10.1109/T-ED.1964.15364ADSCrossRefGoogle Scholar
  25. 25.
    Hall RN (1951) Germanium rectifier characteristics. Phys Rev 83(1):228Google Scholar
  26. 26.
    Hall RN (1959) Recombination processes in semiconductors. Proc IEE-Part B Electron Commun Eng 106(17S):923–931.  https://doi.org/10.1049/pi-b-2.1959.0171CrossRefGoogle Scholar
  27. 27.
    Hänsch W (1991) The drift diffusion equation and its applications in MOSFET modeling. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-9095-1CrossRefGoogle Scholar
  28. 28.
    Haug A (1984) Temperature dependence of Auger recombination in gallium antimonide. J Phys C Solid State Phys 17(34):6191.  https://doi.org/10.1088/0022-3719/17/34/019ADSCrossRefGoogle Scholar
  29. 29.
    Hess K (2000) Advanced theory of semiconductor devices, 2 edn. Wiley-IEEE Press, New York.  https://doi.org/10.1109/9780470544105CrossRefGoogle Scholar
  30. 30.
    Hu W (2017) P-n junction photodiodes. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, chap. 36, vol. 2. CRC Press, Taylor & Francis Group, Boca Raton, pp 307–336Google Scholar
  31. 31.
    Hurkx GAM, Klaassen DBM, Knuvers MPG (1992) A new recombination model for device simulation including tunneling. IEEE Trans Electron Devices 39(2):331–338.  https://doi.org/10.1109/16.121690ADSCrossRefGoogle Scholar
  32. 32.
    Jackson JD (1962) Classical electrodynamics. Wiley, New YorkzbMATHGoogle Scholar
  33. 33.
    Jacoboni C (2010) Theory of electron transport in semiconductors. Springer, Berlin.  https://doi.org/10.1007/978-3-642-10586-9ADSCrossRefGoogle Scholar
  34. 34.
    Jerome JW (2012) Analysis of charge transport: a mathematical study of semiconductor devices. Springer, Berlin.  https://doi.org/10.1007/978-3-642-79987-7CrossRefGoogle Scholar
  35. 35.
    Jüngel A (1994) On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math Models Methods Appl Sci 4(5):677–703.  https://doi.org/10.1142/S0218202594000388MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Jüngel A (1995) Qualitative behaviour of solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math Models Methods Appl Sci 5(4):497–518.  https://doi.org/10.1142/s0218202595000292MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Jüngel A (2009) Transport equations for semiconductors. Lecture notes in physics, vol 773. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    Kantner M, Bandelow U, Koprucki T, Schulze JH, Strittmatter A, Wünsche HJ (2016) Efficient current injection into single quantum dots through oxide-confined p-n-diodes. IEEE Trans Electron Devices 63(5):2036–2042.  https://doi.org/10.1109/ted.2016.2538561ADSCrossRefGoogle Scholar
  39. 39.
    Kantner M, Koprucki T (2016) Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures. Opt Quantum Electron 48(12):543.  https://doi.org/10.1007/s11082-016-0817-2CrossRefGoogle Scholar
  40. 40.
    Karpov SY (2017) Light-emitting diode fundamentals. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: fundamentals, materials, nanostructures, LEDs, and amplifiers, chap. 14, vol. 1. CRC Press, Taylor & Francis Group, Boca Raton, pp 451–472Google Scholar
  41. 41.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken, New JerseyzbMATHGoogle Scholar
  42. 42.
    Knapp E, Häusermann R, Schwarzenbach HU, Ruhstaller B (2010) Numerical simulation of charge transport in disordered organic semiconductor devices. J Appl Phys 108(5):054504.  https://doi.org/10.1063/1.3475505ADSCrossRefGoogle Scholar
  43. 43.
    Koprucki T, Wilms A, Knorr A, Bandelow U (2011) Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt Quantum Electron 42(11):777–783.  https://doi.org/10.1007/s11082-011-9479-2CrossRefGoogle Scholar
  44. 44.
    Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29(1):255–284.  https://doi.org/10.1088/0034-4885/29/1/306CrossRefGoogle Scholar
  45. 45.
    Landsberg PT (1952) On the diffusion theory of rectification. Proc R Soc Lond A 213(1113):226–237.  https://doi.org/10.1098/rspa.1952.0122ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    Levinstein M, Rumyantsev S, Shur M (eds) (1996) Handbook series on semiconductor parameters – ternary and quaternary III-V compounds, vol 2. World Scientific, Singapore.  https://doi.org/10.1142/2046-vol2CrossRefGoogle Scholar
  47. 47.
    Lifshitz EM, Pitaevskii LP (1981) Physical kinetics, course of theoretical physics, vol 10. Pergamon Press, OxfordGoogle Scholar
  48. 48.
    Lindefelt U (1994) Heat generation in semiconductor devices. J Appl Phys 75(2):942–957.  https://doi.org/10.1063/1.356450ADSCrossRefGoogle Scholar
  49. 49.
    Markovich PA (1986) The stationary Semiconductor device equations. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-3678-2CrossRefGoogle Scholar
  50. 50.
    Auf der Maur M, Albes T, Gagliardi A (2017) Thin-film solar cells. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, chap. 43, vol 2. CRC Press, Taylor & Francis Group, Boca Raton, pp 497–538Google Scholar
  51. 51.
    Auf der Maur M, Povolotskyi M, Sacconi F, Pecchia A, Romano G, Penazzi G, Di Carlo A (2008) TiberCAD: towards multiscale simulation of optoelectronic devices. In: Proceedings of the International Conference Numerical Simulation of Optoelectronic Devices, pp 43–44.  https://doi.org/10.1109/NUSOD.2008.4668233
  52. 52.
    van Mensfoort SLM, Coehoorn R (2008) Effect of gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys Rev B 78(8):085207.  https://doi.org/10.1103/PhysRevB.78.085207ADSCrossRefGoogle Scholar
  53. 53.
    Mnatsakanov TT, Levinshtein ME, Pomortseva LI, Yurkov SN (2004) Universal analytical approximation of the carrier mobility in semiconductors for a wide range of temperatures and doping densities. Electron Opt Prop Semicond 38(1):56–60.  https://doi.org/10.1134/1.1641133CrossRefGoogle Scholar
  54. 54.
    Mock MS (1983) Analysis of mathematical models of semiconductor devices. Boole Press, DublinzbMATHGoogle Scholar
  55. 55.
    Müller M (2017) Solar cell fundamentals. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, chap. 39, vol. 2. CRC Press, Taylor & Francis Group, Boca Raton, pp 383–413Google Scholar
  56. 56.
    Nanz G (1991) A critical study of boundary conditions in device simulation. In: Fichtner W, Aemmer D (eds) Simulation of semiconductor devices and processes, vol 4. Hartung Gorre, Zürich, pp 321–328Google Scholar
  57. 57.
    Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37(4):405.  https://doi.org/10.1103/PhysRev.37.405ADSCrossRefGoogle Scholar
  58. 58.
    Palankovski V, Quay R (2004) Analysis and simulation of heterostructure devices. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-0560-3CrossRefGoogle Scholar
  59. 59.
    Parrott JE (1996) Thermodynamic theory of transport processes in semiconductors. IEEE Trans Electron Devices 43(5):809–826.  https://doi.org/10.1109/16.491259ADSCrossRefGoogle Scholar
  60. 60.
    Piprek J (ed) (2005) Optoelectronic devices-advanced simulation and analysis. Springer, New York.  https://doi.org/10.1007/b138826Google Scholar
  61. 61.
    Ridley BK (2013) Quantum processes in semiconductors, 4 edn. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780199677214.001.0001
  62. 62.
    van Roosbroeck WW (1950) Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst Tech J 29(4):560–607.  https://doi.org/10.1002/j.1538-7305.1950.tb03653.xCrossRefGoogle Scholar
  63. 63.
    van Roosbroeck WW, Shockley W (1954) Photon-radiative recombination of electrons and holes in germanium. Phys Rev 94(6):1558.  https://doi.org/10.1103/PhysRev.94.1558ADSCrossRefGoogle Scholar
  64. 64.
    Rudan M (2015) Physics of semiconductor devices. Springer, New York.  https://doi.org/10.1007/978-1-4939-1151-6CrossRefGoogle Scholar
  65. 65.
    Sant S, Schenk A (2017) The effect of density-of-state tails on band-to-band tunneling: Theory and application to tunnel field effect transistors. J Appl Phys 122:135702.  https://doi.org/10.1063/1.4994112ADSCrossRefGoogle Scholar
  66. 66.
    Schäfer W, Wegener M (2002) Semiconductor optics and transport phenomena. Springer, Berlin.  https://doi.org/10.1007/978-3-662-04663-0CrossRefGoogle Scholar
  67. 67.
    Scharfetter DL, Gummel HK (1969) Large-signal analysis of a silicon Read diode oscillator. IEEE Trans Electron Devices 16(1):64–77.  https://doi.org/10.1109/t-ed.1969.16566ADSCrossRefGoogle Scholar
  68. 68.
    Schenk A (1992) A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon. Solid-State Electron 35(11):1585–1596.  https://doi.org/10.1016/0038-1101(92)90184-EADSCrossRefGoogle Scholar
  69. 69.
    Schenk A, Stahl M, Wünsche HJ (1989) Calculation of interband tunneling in inhomogeneous fields. Phys Status Solidi B 154(2):815–826.  https://doi.org/10.1002/pssb.2221540240ADSCrossRefGoogle Scholar
  70. 70.
    Schröder D (1994) Modelling of interface carrier transport for device simulation. Series in computational microelectronics. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-6644-4CrossRefGoogle Scholar
  71. 71.
    Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Vienna.  https://doi.org/10.1007/978-3-7091-8752-4CrossRefGoogle Scholar
  72. 72.
    Selberherr S (1989) MOS device modeling at 77 K. IEEE Trans Electron Devices 36(8):1464–1474.  https://doi.org/10.1109/16.30960ADSCrossRefGoogle Scholar
  73. 73.
    Shockley W, Read W Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87(5):835–842.  https://doi.org/10.1103/PhysRev.87.835ADSCrossRefGoogle Scholar
  74. 74.
    Silvaco International (2016) Atlas user’s manual. Santa Clara, CAGoogle Scholar
  75. 75.
    Steiger S, Veprek RG, Witzigmann B (2008) Unified simulation of transport and luminescence in optoelectronic nanostructures. J Comput Electron 7(4):509–520.  https://doi.org/10.1007/s10825-008-0261-zCrossRefGoogle Scholar
  76. 76.
    Stratton R (1962) Diffusion of hot and cold electrons in semiconductor barriers. Phys Rev 126(6):2002.  https://doi.org/10.1103/PhysRev.126.2002ADSCrossRefGoogle Scholar
  77. 77.
    Sverdlov V, Ungersboeck E, Kosina H, Selberherr S (2008) Current transport models for nanoscale semiconductor devices. Mater Sci Eng R 58(6):228–270.  https://doi.org/10.1016/j.mser.2007.11.001CrossRefGoogle Scholar
  78. 78.
    Inc Synopsys (2010) Sentaurus device userguide. Mountain View, CAGoogle Scholar
  79. 79.
    Sze SM (1981) Physics of semiconductor devices, 2 edn. Wiley, New York.  https://doi.org/10.1002/0470068329CrossRefGoogle Scholar
  80. 80.
    Vasileska D, Goodnick SM, Klimeck G (2010) Computational electronics–semiclassical and quantum device modeling and simulation. CRC Press, Taylor & Francis Group, Boca Raton.  https://doi.org/10.1201/b13776CrossRefGoogle Scholar
  81. 81.
    Vogel W, Welsch DG (2006) Quantum optics, 3 edn. Wiley, Weinheim.  https://doi.org/10.1002/3527608524
  82. 82.
    Wachutka GK (1990) Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans Comput Aided Design Integr Circuits Syst 9(11):1141–1149.  https://doi.org/10.1109/43.62751CrossRefGoogle Scholar
  83. 83.
    Wikimedia Commons (2008) A diagram of the first Brillouin zone of a face-centred cubic (FCC) lattice. https://commons.wikimedia.org/wiki/File:Brillouin_Zone_(1st,_FCC).svg
  84. 84.
    Windbacher T, Sverdlov V, Selberherr S (2011) Classical device modeling. In: Vasileska D, Goodnick S(eds) Nano-electronic devices–semiclassical and quantum transport modeling, chap. 2. Springer, New York, pp 1–96.  https://doi.org/10.1007/978-1-4419-8840-9_1Google Scholar
  85. 85.
    Yu Z, Chen D, So L, Dutton RW (1994) PISCES-2ET 2D device simulator. Technical Report, Integrated Circuits Laboratory, Stanford University, StanfordGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)Leibniz Institute in Forschungsverbund Berlin e. V.BerlinGermany

Personalised recommendations