Part of the Springer Theses book series (Springer Theses)


This chapter provides a brief introduction to semiconductor quantum dots and their utilization in semiconductor quantum optics for the generation of quantum light. Moreover, it motivates the combination of classical and fully quantum mechanical modeling approaches for the device-scale simulation of quantum light emitting diodes to obtain comprehensive multi-physics simulation tools.


  1. 1.
    Aspuru-Guzik A, Walther P (2012) Photonic quantum simulators. Nat Phys 8(4):285. Scholar
  2. 2.
    Barnes WL, Björk G, Gérard JM, Jonsson P, Wasey JAE, Worthing PT, Zwiller V (2002) Solid-state single photon sources: light collection strategies. Eur Phys J D 18(2):197–210. Scholar
  3. 3.
    Basché T, Moerner WE, Orrit M, Talon H (1992) Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69(10):1516. Scholar
  4. 4.
    Bennett AJ, Atkinson P, See P, Ward MB, Stevenson RM, Yuan ZL, Unitt DC, Ellis DJP, Cooper K, Ritchie DA, Shields AJ (2006) Single-photon-emitting diodes: a review. Phys Status Solid B 243(14):3730–3740. Scholar
  5. 5.
    Bhattacharya P, Mi Z (2007) Quantum-dot optoelectronic devices. Proc IEEE 95(9):1723–1740. Scholar
  6. 6.
    Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, ChichesterGoogle Scholar
  7. 7.
    Bimberg D, Pohl UW (2011) Quantum dots: promises and accomplishments. Mater Today 14(9):388–397. Scholar
  8. 8.
    Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger JA, Unrau W, Munnix M, Rodt S, Haisler VA, Toropov AI, Bakarov A, Kalagin AK (2009) Quantum dots for single-and entangled-photon emitters. IEEE Photon J 1(1):58–68. Scholar
  9. 9.
    Boretti A, Rosa L, Mackie A, Castelletto S (2015) Electrically driven quantum light sources. Adv Opt Mat 3(8):1012–1033. Scholar
  10. 10.
    Buckley S, Rivoire K, Vučković J (2012) Engineered quantum dot single-photon sources. Rep Prog Phys 75(12):126503. Scholar
  11. 11.
    Chow WW, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37(3):109–184. Scholar
  12. 12.
    Chow WW, Jahnke F, Gies C (2014) Emission properties of nanolasers during the transition to lasing. Light Sci Appl 3:e201. Scholar
  13. 13.
    Dachner MR, Malić E, Richter M, Carmele A, Kabuss J, Wilms A, Kim JE, Hartmann G, Wolters J, Bandelow U, Knorr A (2010) Theory of carrier and photon dynamics in quantum dot light emitters. Phys Status Solidi B 247(4):809–828. Scholar
  14. 14.
    Dowling JP, Milburn GJ (2003) Quantum technology: the second quantum revolution. Philos T Roy Soc A 361(1809):1655–1674. Scholar
  15. 15.
    Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vučković J (2005) Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett 95(1):013904.
  16. 16.
    Fox M (2006) Quantum optics-an introduction, Oxford master series in physics, vol 15. Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Gerhardt S, Iles-Smith J, McCutcheon DPS, He YM, Unsleber S, Betzold S, Gregersen N, Mørk J, Höfling S, Schneider C (2018) Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source. Phys Rev B 97(19):195432. Scholar
  18. 18.
    Gies C, Florian M, Gartner P, Jahnke F (2011) The single quantum dot-laser: Lasing and strong coupling in the high-excitation regime. Opt Express 19(15):14370–14388. Scholar
  19. 19.
    Gies C, Florian M, Jahnke F, Gartner P (2012) Modeling single quantum dots in microcavities. In: Jahnke F (ed) Quantum optics with semiconductor nanostructures, (Series in Electronic and Optical Materials) vol 28, chap 3. Woodhead Publishing, Oxford, pp. 78–114. Scholar
  20. 20.
    Gies C, Gericke F, Gartner P, Holzinger S, Hopfmann C, Heindel T, Wolters J, Schneider C, Florian M, Jahnke F, Höfling S, Kamp M, Reitzenstein S (2017) Strong light-matter coupling in the presence of lasing. Phys Rev A 96:023806. Scholar
  21. 21.
    Gioannini M, Cedola AP, Santo ND, Bertazzi F, Cappelluti F (2013) Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J Photovolt 3(4):1271–1278. Scholar
  22. 22.
    Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74(1):145. Scholar
  23. 23.
    Gregersen N, McCutcheon DPS, Mørk J (2017) Single-photon sources. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, vol 2, chap 46. CRC Press, Taylor & Francis Group, Boca Raton, pp 585–607. Scholar
  24. 24.
    Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S (2015) Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 6:7662. Scholar
  25. 25.
    Hanbury Brown R, Twiss RQ (1956) A test of a new type of stellar interferometer on Sirius. Nature 178:1046–1048. Scholar
  26. 26.
    Hawrylak P, Korkusiński M Electronic properties of self-assembled quantum dots. In: Michler [44], chap 2, pp 25–91. Scholar
  27. 27.
    Hopfmann C, Carmele A, Musiał A, Schneider C, Kamp M, Höfling S, Knorr A, Reitzenstein S (2017) Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot-microcavity system. Phys Rev B 95(3):035302.
  28. 28.
    Jahnke F (ed) (2012) Quantum Optics with Semiconductor Nanostructures, Series in Electronic and Optical Materials, vol 28. Woodhead Publishing, OxfordGoogle Scholar
  29. 29.
    Kaganskiy A, Fischbach S, Strittmatter A, Rodt S, Heindel T, Reitzenstein S (2018) Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt Commun 413:162–166. Scholar
  30. 30.
    Kantner M, Bandelow U, Koprucki T, Schulze JH, Strittmatter A, Wünsche HJ (2016) Efficient current injection into single quantum dots through oxide-confined p-n-diodes. IEEE Trans Electron Devices 63(5):2036–2042. Scholar
  31. 31.
    Kimble HJ (2008) The quantum internet. Nature 453(7198):1023–1030. Scholar
  32. 32.
    Kimble HJ, Dagenais M, Mandel L (1977) Photon antibunching in resonance fluorescence. Phys Rev Lett 39(11):691. Scholar
  33. 33.
    Kiraz A, Reese C, Gayral B, Zhang L, Schoenfeld WV, Gerardot BD, Petroff PM, Hu EL, İmamoğlu A (2003) Cavity-quantum electrodynamics with quantum dots. J Opt B Quantum Semiclassical Opt 5(2):129. Scholar
  34. 34.
    Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409(6816):46–52. Scholar
  35. 35.
    Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2009) One- and two-photon pump-probe optical spectroscopic measurements reveal the \(S_1\) and intramolecular charge transfer states are distinct in fucoxanthin. Chem Phys Lett 483:95–100. Scholar
  36. 36.
    Kreinberg S, Chow WW, Wolters J, Schneider C, Gies C, Jahnke F, Höfling S, Kamp M, Reitzenstein S (2017) Emission from quantum-dot high-\(\beta \) microcavities: Transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci Appl 6(8):e17030. Scholar
  37. 37.
    Kuhn SC, Knorr A, Reitzenstein S, Richter M (2016) Cavity assisted emission of single, paired and heralded photons from a single quantum dot device. Opt Express 24(22):25446–25461. Scholar
  38. 38.
    Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85(2):290. Scholar
  39. 39.
    Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464(7285):45. Scholar
  40. 40.
    Lee KS, Oh G, Kim EK, Song JD (2017) Temperature dependent photoluminescence from InAs/GaAs quantum dots grown by molecular beam epitaxy. Appl Sci Converg Technol 26(4):86–90. Scholar
  41. 41.
    Lodahl P, Mahmoodian S, Stobbe S (2015) Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 87(2):347–400. Scholar
  42. 42.
    Lodahl P, Van Driel AF, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL (2004) Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430(7000):654. Scholar
  43. 43.
    Márquez J, Geelhaar L, Jacobi K (2001) Atomically resolved structure of InAs quantum dots. Appl Phys Lett 78(16):2309–2311. Scholar
  44. 44.
    Michler P (ed) (2003) Single Quantum Dots, topics in applied physics, vol 90. Springer, Berlin.
  45. 45.
    Michler P Quantum dot single-photon sources. In: Single Semiconductor Quantum Dots [46], chap. 6, pp. 185–225. Scholar
  46. 46.
    Michler P (ed) (2009) Single Semiconductor Quantum Dots. NanoScience and technology. Springer, Berlin. Scholar
  47. 47.
    Michler P (ed) (2017) Quantum Dots for Quantum Information Technologies. Springer Series in Nano-Optics and Nanophotonics. Springer, Cham. Scholar
  48. 48.
    Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, İmamoğlu A (2000) A quantum dot single-photon turnstile device. Science 290(5500):2282–2285. Scholar
  49. 49.
    Monz T, Nigg D, Martinez EA, Brandl MF, Schindler P, Rines R, Wang SX, Chuang IL, Blatt R (2016) Realization of a scalable Shor algorithm. Science 351(6277):1068–1070. Scholar
  50. 50.
    Paul H (1995) Photonen: Eine Einführung in die Quantenoptik. Vieweg+Teubner Verlag, Stuttgart, Leipzig. Scholar
  51. 51.
    Piprek J (ed) (2017) Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs and Amplifiers. CRC Press, Taylor & Francis Group, Boca Raton. Scholar
  52. 52.
    Piprek J (ed) (2017) Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods. CRC Press, Taylor & Francis Group, Boca Raton. Scholar
  53. 53.
    Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69(1–2):37–38. Scholar
  54. 54.
    Rahmani A, Bryant GW (2001) Modification of spontaneous emission of quantum dots: Purcell effect in semiconductor microcavities. Phys Status Solidi B 224(3):807–810.$<$807::AID-PSSB807$>$3.0.CO;2-DADSCrossRefGoogle Scholar
  55. 55.
    Reischle M, Kessler C, Schulz WM, Eichfelder M, Roßbach R, Jetter M, Michler P (2010) Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Appl Phys Lett 97(14):143513. Scholar
  56. 56.
    Reithmaier JP, Sęk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh LV, Kulakovskii VD, Reinecke TL, Forchel A (2004) Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014):197–200. Scholar
  57. 57.
    Reitzenstein S (2012) Semiconductor quantum dot-microcavities for quantum optics in solid state. IEEE J Sel Top Quant 18(6):1733–1746. Scholar
  58. 58.
    Reitzenstein S, Heindel T, Kistner C, Rahimi-Iman A, Schneider C, Höfling S, Forchel A (2008) Low threshold electrically pumped quantum dot-micropillar lasers. Appl Phys Lett 93(6):061104. Scholar
  59. 59.
    Rezus YLA, Walt SG, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V (2012) Single-photon spectroscopy of a single molecule. Phys Rev Lett 108:093601. Scholar
  60. 60.
    Richter M, Carmele A, Sitek A, Knorr A (2009) Few-photon model of the optical emission of semiconductor quantum dots. Phys Rev Lett 103(8):087407.
  61. 61.
    Riedel MF, Binosi D, Thew R, Calarco T (2017) The european quantum technologies flagship programme. Quantum Sci Technol 2(3):030501. Scholar
  62. 62.
    van Roosbroeck WW (1950) Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst Tech J 29(4):560–607. Scholar
  63. 63.
    Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y (2002) Indistinguishable photons from a single-photon device. Nature 419(6907):594–597. Scholar
  64. 64.
    Santori C, Fattal D, Yamamoto Y (2010) Single-photon Devices and Applications. Wiley, WeinheimGoogle Scholar
  65. 65.
    Schlehahn A, Thoma A, Munnelly P, Kamp M, Höfling S, Heindel T, Schneider C, Reitzenstein S (2016) An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics 1(1):011301. Scholar
  66. 66.
    Schliwa A, Hönig G, Bimberg D (2014) Electronic properties of III-V quantum dots. In: Ehrhardt, M, Koprucki T (eds) Multi-band effective mass approximations – advanced mathematical models and numerical techniques, lecture notes in computational science and engineering, vol 94, chap 2. Springer, Cham, pp 57–85 Scholar
  67. 67.
    Scully MO, Zubairy MS (1997) Quantum Optics. Cambridge University Press, Cambridge.
  68. 68.
    Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Vienna. Scholar
  69. 69.
    Shields AJ (2007) Semiconductor quantum light sources. Nat Photonics 1(4):215–223. Scholar
  70. 70.
    Shields AJ, Stevenson RM, Thompson RM, Yuan Z, Kardynal BE. (2002) Generation of single photons using semiconductor quantum dots. In: Chakraborty T, Peeters F, Sivan U (eds) Nano-physics & bio-electronics: a new odyssey, chap 4. Elsevier Science, Amsterdam, pp 111–146. Scholar
  71. 71.
    Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band k\(\cdot \)p theory. Phys Rev B 59:5688–5701. Scholar
  72. 72.
    Strauf S, Jahnke F (2011) Single quantum dot nanolaser. Laser Photonics Rev 5(5):607–633. Scholar
  73. 73.
    Stuhler J (2015) Quantum optics route to market. Nat Phys 11(4):293–295. Scholar
  74. 74.
    Sverdlov V, Ungersboeck E, Kosina H, Selberherr S (2008) Current transport models for nanoscale semiconductor devices. Mater Sci Eng R 58(6):228–270. Scholar
  75. 75.
    Thoma A, Schnauber P, Gschrey M, Seifried M, Wolters J, Schulze JH, Strittmatter A, Rodt S, Carmele A, Knorr A, Heindel T, Reitzenstein S (2016) Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments. Phys Rev Lett 116(3):033601.
  76. 76.
    Unrau W, Quandt D, Schulze JH, Heindel T, Germann TD, Hitzemann O, Strittmatter A, Reitzenstein S, Pohl UW, Bimberg D (2012) Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl Phys Lett 101(21):211119. Scholar
  77. 77.
    Vasileska D, Goodnick SM, Klimeck G (2010) Computational Electronics–Semiclassical and Quantum Device Modeling and Simulation. CRC Press, Taylor & Francis Group, Boca Raton. Scholar
  78. 78.
    Vogel W, Welsch DG (2006) Quantum optics, 3rd edn. Wiley, Weinheim.
  79. 79.
    Walls DF (1979) Evidence for the quantum nature of light. Nature 280(5722):451–454. Scholar
  80. 80.
    Wu J, Chen S, Seeds A, Liu H (2015) Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D Appl Phys 48(36):363001. Scholar
  81. 81.
    Wu Y, Zhang G, Guo L, Li X, Qi G (2014) Theoretical simulation of carrier capture and relaxation rates in quantum-dot semiconductor optical amplifiers. J Appl Phys 115(22):224502. Scholar
  82. 82.
    Yuan Z, Kardynal BE, Stevenson RM, Shields AJ, Lobo CJ, Cooper K, Beattie NS, Ritchie DA, Pepper M (2002) Electrically driven single-photon source. Science 295(5552):102–105. Scholar
  83. 83.
    Zwiller V, Aichele T, Benson O (2004) Quantum optics with single quantum dot devices. New J Phys 6:96. Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)Leibniz Institute in Forschungsverbund Berlin e. V.BerlinGermany

Personalised recommendations