Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 673 Accesses

Abstract

This chapter provides a brief introduction to semiconductor quantum dots and their utilization in semiconductor quantum optics for the generation of quantum light. Moreover, it motivates the combination of classical and fully quantum mechanical modeling approaches for the device-scale simulation of quantum light emitting diodes to obtain comprehensive multi-physics simulation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://uknqt.epsrc.ac.uk.

  2. 2.

    https://qutech.nl.

  3. 3.

    http://www.qutega.de/.

  4. 4.

    https://www.quantumlah.org.

  5. 5.

    Previously known phenomena like, e.g., the photoelectric effect can be explained by a semi-classical conception that requires only the quantization of matter. The electromagnetic field can be treated classically according to Maxwell’s equations [16, 78].

References

  1. Aspuru-Guzik A, Walther P (2012) Photonic quantum simulators. Nat Phys 8(4):285. https://doi.org/10.1038/nphys2253

    Article  Google Scholar 

  2. Barnes WL, Björk G, Gérard JM, Jonsson P, Wasey JAE, Worthing PT, Zwiller V (2002) Solid-state single photon sources: light collection strategies. Eur Phys J D 18(2):197–210. https://doi.org/10.1140/epjd/e20020024

    Article  ADS  Google Scholar 

  3. Basché T, Moerner WE, Orrit M, Talon H (1992) Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69(10):1516. https://doi.org/10.1103/PhysRevLett.69.1516

    Article  ADS  Google Scholar 

  4. Bennett AJ, Atkinson P, See P, Ward MB, Stevenson RM, Yuan ZL, Unitt DC, Ellis DJP, Cooper K, Ritchie DA, Shields AJ (2006) Single-photon-emitting diodes: a review. Phys Status Solid B 243(14):3730–3740. https://doi.org/10.1002/pssb.200642232

    Article  ADS  Google Scholar 

  5. Bhattacharya P, Mi Z (2007) Quantum-dot optoelectronic devices. Proc IEEE 95(9):1723–1740. https://doi.org/10.1109/JPROC.2007.900897

    Article  Google Scholar 

  6. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, Chichester

    Google Scholar 

  7. Bimberg D, Pohl UW (2011) Quantum dots: promises and accomplishments. Mater Today 14(9):388–397. https://doi.org/10.1016/S1369-7021(11)70183-3

    Article  Google Scholar 

  8. Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger JA, Unrau W, Munnix M, Rodt S, Haisler VA, Toropov AI, Bakarov A, Kalagin AK (2009) Quantum dots for single-and entangled-photon emitters. IEEE Photon J 1(1):58–68. https://doi.org/10.1109/JPHOT.2009.2025329

    Article  ADS  Google Scholar 

  9. Boretti A, Rosa L, Mackie A, Castelletto S (2015) Electrically driven quantum light sources. Adv Opt Mat 3(8):1012–1033. https://doi.org/10.1002/adom.201500022

    Article  Google Scholar 

  10. Buckley S, Rivoire K, Vučković J (2012) Engineered quantum dot single-photon sources. Rep Prog Phys 75(12):126503. https://doi.org/10.1088/0034-4885/75/12/126503

    Article  ADS  Google Scholar 

  11. Chow WW, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37(3):109–184. https://doi.org/10.1016/j.pquantelec.2013.04.001

    Article  ADS  Google Scholar 

  12. Chow WW, Jahnke F, Gies C (2014) Emission properties of nanolasers during the transition to lasing. Light Sci Appl 3:e201. https://doi.org/10.1038/lsa.2014.82

    Article  ADS  Google Scholar 

  13. Dachner MR, Malić E, Richter M, Carmele A, Kabuss J, Wilms A, Kim JE, Hartmann G, Wolters J, Bandelow U, Knorr A (2010) Theory of carrier and photon dynamics in quantum dot light emitters. Phys Status Solidi B 247(4):809–828. https://doi.org/10.1002/pssb.200945433

    Article  ADS  Google Scholar 

  14. Dowling JP, Milburn GJ (2003) Quantum technology: the second quantum revolution. Philos T Roy Soc A 361(1809):1655–1674. https://doi.org/10.1098/rsta.2003.1227

    Article  ADS  MathSciNet  Google Scholar 

  15. Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vučković J (2005) Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett 95(1):013904. https://doi.org/10.1103/PhysRevLett.95.013904

  16. Fox M (2006) Quantum optics-an introduction, Oxford master series in physics, vol 15. Oxford University Press, Oxford

    Google Scholar 

  17. Gerhardt S, Iles-Smith J, McCutcheon DPS, He YM, Unsleber S, Betzold S, Gregersen N, Mørk J, Höfling S, Schneider C (2018) Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source. Phys Rev B 97(19):195432. https://doi.org/10.1103/PhysRevB.97.195432

    Article  ADS  Google Scholar 

  18. Gies C, Florian M, Gartner P, Jahnke F (2011) The single quantum dot-laser: Lasing and strong coupling in the high-excitation regime. Opt Express 19(15):14370–14388. https://doi.org/10.1364/OE.19.014370

    Article  ADS  Google Scholar 

  19. Gies C, Florian M, Jahnke F, Gartner P (2012) Modeling single quantum dots in microcavities. In: Jahnke F (ed) Quantum optics with semiconductor nanostructures, (Series in Electronic and Optical Materials) vol 28, chap 3. Woodhead Publishing, Oxford, pp. 78–114. https://doi.org/10.1533/9780857096395.1.78

    Chapter  Google Scholar 

  20. Gies C, Gericke F, Gartner P, Holzinger S, Hopfmann C, Heindel T, Wolters J, Schneider C, Florian M, Jahnke F, Höfling S, Kamp M, Reitzenstein S (2017) Strong light-matter coupling in the presence of lasing. Phys Rev A 96:023806. https://doi.org/10.1103/PhysRevA.96.023806

    Article  ADS  Google Scholar 

  21. Gioannini M, Cedola AP, Santo ND, Bertazzi F, Cappelluti F (2013) Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J Photovolt 3(4):1271–1278. https://doi.org/10.1109/jphotov.2013.2270345

    Article  Google Scholar 

  22. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74(1):145. https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  Google Scholar 

  23. Gregersen N, McCutcheon DPS, Mørk J (2017) Single-photon sources. In: Piprek J (ed) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, vol 2, chap 46. CRC Press, Taylor & Francis Group, Boca Raton, pp 585–607. https://doi.org/10.4324/9781315152318-21

    Chapter  Google Scholar 

  24. Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S (2015) Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 6:7662. https://doi.org/10.1038/ncomms8662

    Article  ADS  Google Scholar 

  25. Hanbury Brown R, Twiss RQ (1956) A test of a new type of stellar interferometer on Sirius. Nature 178:1046–1048. https://doi.org/10.1038/1781046a0

    Article  ADS  Google Scholar 

  26. Hawrylak P, Korkusiński M Electronic properties of self-assembled quantum dots. In: Michler [44], chap 2, pp 25–91. https://doi.org/10.1007/978-3-540-39180-7_2

    Google Scholar 

  27. Hopfmann C, Carmele A, Musiał A, Schneider C, Kamp M, Höfling S, Knorr A, Reitzenstein S (2017) Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot-microcavity system. Phys Rev B 95(3):035302. https://doi.org/10.1103/physrevb.95.035302

  28. Jahnke F (ed) (2012) Quantum Optics with Semiconductor Nanostructures, Series in Electronic and Optical Materials, vol 28. Woodhead Publishing, Oxford

    Google Scholar 

  29. Kaganskiy A, Fischbach S, Strittmatter A, Rodt S, Heindel T, Reitzenstein S (2018) Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt Commun 413:162–166. https://doi.org/10.1016/j.optcom.2017.12.032

    Article  ADS  Google Scholar 

  30. Kantner M, Bandelow U, Koprucki T, Schulze JH, Strittmatter A, Wünsche HJ (2016) Efficient current injection into single quantum dots through oxide-confined p-n-diodes. IEEE Trans Electron Devices 63(5):2036–2042. https://doi.org/10.1109/ted.2016.2538561

    Article  ADS  Google Scholar 

  31. Kimble HJ (2008) The quantum internet. Nature 453(7198):1023–1030. https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  32. Kimble HJ, Dagenais M, Mandel L (1977) Photon antibunching in resonance fluorescence. Phys Rev Lett 39(11):691. https://doi.org/10.1103/PhysRevLett.39.691

    Article  ADS  Google Scholar 

  33. Kiraz A, Reese C, Gayral B, Zhang L, Schoenfeld WV, Gerardot BD, Petroff PM, Hu EL, İmamoğlu A (2003) Cavity-quantum electrodynamics with quantum dots. J Opt B Quantum Semiclassical Opt 5(2):129. https://doi.org/10.1088/1464-4266/5/2/303

    Article  ADS  Google Scholar 

  34. Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409(6816):46–52. https://doi.org/10.1038/35051009

    Article  ADS  Google Scholar 

  35. Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2009) One- and two-photon pump-probe optical spectroscopic measurements reveal the \(S_1\) and intramolecular charge transfer states are distinct in fucoxanthin. Chem Phys Lett 483:95–100. https://doi.org/10.1016/j.cplett.2009.10.077

    Article  ADS  Google Scholar 

  36. Kreinberg S, Chow WW, Wolters J, Schneider C, Gies C, Jahnke F, Höfling S, Kamp M, Reitzenstein S (2017) Emission from quantum-dot high-\(\beta \) microcavities: Transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci Appl 6(8):e17030. https://doi.org/10.1038/lsa.2017.30

    Article  ADS  Google Scholar 

  37. Kuhn SC, Knorr A, Reitzenstein S, Richter M (2016) Cavity assisted emission of single, paired and heralded photons from a single quantum dot device. Opt Express 24(22):25446–25461. https://doi.org/10.1364/oe.24.025446

    Article  ADS  Google Scholar 

  38. Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85(2):290. https://doi.org/10.1103/PhysRevLett.85.290

    Article  ADS  Google Scholar 

  39. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464(7285):45. https://doi.org/10.1038/nature08812

    Article  ADS  Google Scholar 

  40. Lee KS, Oh G, Kim EK, Song JD (2017) Temperature dependent photoluminescence from InAs/GaAs quantum dots grown by molecular beam epitaxy. Appl Sci Converg Technol 26(4):86–90. https://doi.org/10.5757/ASCT.2017.26.4.86

    Article  Google Scholar 

  41. Lodahl P, Mahmoodian S, Stobbe S (2015) Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 87(2):347–400. https://doi.org/10.1103/revmodphys.87.347

    Article  ADS  MathSciNet  Google Scholar 

  42. Lodahl P, Van Driel AF, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL (2004) Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430(7000):654. https://doi.org/10.1038/nature02772

    Article  ADS  Google Scholar 

  43. Márquez J, Geelhaar L, Jacobi K (2001) Atomically resolved structure of InAs quantum dots. Appl Phys Lett 78(16):2309–2311. https://doi.org/10.1063/1.1365101

    Article  ADS  Google Scholar 

  44. Michler P (ed) (2003) Single Quantum Dots, topics in applied physics, vol 90. Springer, Berlin. https://doi.org/10.1007/b13751

  45. Michler P Quantum dot single-photon sources. In: Single Semiconductor Quantum Dots [46], chap. 6, pp. 185–225. https://doi.org/10.1007/978-3-540-87446-1_6

    Chapter  Google Scholar 

  46. Michler P (ed) (2009) Single Semiconductor Quantum Dots. NanoScience and technology. Springer, Berlin. https://doi.org/10.1007/978-3-540-87446-1

    Google Scholar 

  47. Michler P (ed) (2017) Quantum Dots for Quantum Information Technologies. Springer Series in Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-56378-7

    MATH  Google Scholar 

  48. Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, İmamoğlu A (2000) A quantum dot single-photon turnstile device. Science 290(5500):2282–2285. https://doi.org/10.1126/science.290.5500.2282

    Article  ADS  Google Scholar 

  49. Monz T, Nigg D, Martinez EA, Brandl MF, Schindler P, Rines R, Wang SX, Chuang IL, Blatt R (2016) Realization of a scalable Shor algorithm. Science 351(6277):1068–1070. https://doi.org/10.1126/science.aad9480

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Paul H (1995) Photonen: Eine Einführung in die Quantenoptik. Vieweg+Teubner Verlag, Stuttgart, Leipzig. https://doi.org/10.1007/978-3-322-96700-8

    Book  Google Scholar 

  51. Piprek J (ed) (2017) Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs and Amplifiers. CRC Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9781315152301

    Google Scholar 

  52. Piprek J (ed) (2017) Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods. CRC Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9781315152318

    Google Scholar 

  53. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69(1–2):37–38. https://doi.org/10.1103/physrev.69.37

    Article  ADS  Google Scholar 

  54. Rahmani A, Bryant GW (2001) Modification of spontaneous emission of quantum dots: Purcell effect in semiconductor microcavities. Phys Status Solidi B 224(3):807–810. https://doi.org/10.1002/(SICI)1521-3951(200104)224:3$<$807::AID-PSSB807$>$3.0.CO;2-D

    Article  ADS  Google Scholar 

  55. Reischle M, Kessler C, Schulz WM, Eichfelder M, Roßbach R, Jetter M, Michler P (2010) Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Appl Phys Lett 97(14):143513. https://doi.org/10.1063/1.3497016

    Article  ADS  Google Scholar 

  56. Reithmaier JP, Sęk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh LV, Kulakovskii VD, Reinecke TL, Forchel A (2004) Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014):197–200. https://doi.org/10.1117/12.661393

    Article  ADS  Google Scholar 

  57. Reitzenstein S (2012) Semiconductor quantum dot-microcavities for quantum optics in solid state. IEEE J Sel Top Quant 18(6):1733–1746. https://doi.org/10.1109/JSTQE.2012.2195159

    Article  Google Scholar 

  58. Reitzenstein S, Heindel T, Kistner C, Rahimi-Iman A, Schneider C, Höfling S, Forchel A (2008) Low threshold electrically pumped quantum dot-micropillar lasers. Appl Phys Lett 93(6):061104. https://doi.org/10.1063/1.2969397

    Article  ADS  Google Scholar 

  59. Rezus YLA, Walt SG, Lettow R, Renn A, Zumofen G, Götzinger S, Sandoghdar V (2012) Single-photon spectroscopy of a single molecule. Phys Rev Lett 108:093601. https://doi.org/10.1103/physrevlett.108.093601

    Article  ADS  Google Scholar 

  60. Richter M, Carmele A, Sitek A, Knorr A (2009) Few-photon model of the optical emission of semiconductor quantum dots. Phys Rev Lett 103(8):087407. https://doi.org/10.1103/PhysRevLett

  61. Riedel MF, Binosi D, Thew R, Calarco T (2017) The european quantum technologies flagship programme. Quantum Sci Technol 2(3):030501. https://doi.org/10.1088/2058-9565/aa6aca

    Article  ADS  Google Scholar 

  62. van Roosbroeck WW (1950) Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst Tech J 29(4):560–607. https://doi.org/10.1002/j.1538-7305.1950.tb03653.x

    Article  MATH  Google Scholar 

  63. Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y (2002) Indistinguishable photons from a single-photon device. Nature 419(6907):594–597. https://doi.org/10.1038/nature01086

    Article  ADS  Google Scholar 

  64. Santori C, Fattal D, Yamamoto Y (2010) Single-photon Devices and Applications. Wiley, Weinheim

    Google Scholar 

  65. Schlehahn A, Thoma A, Munnelly P, Kamp M, Höfling S, Heindel T, Schneider C, Reitzenstein S (2016) An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics 1(1):011301. https://doi.org/10.1063/1.4939831

    Article  ADS  Google Scholar 

  66. Schliwa A, Hönig G, Bimberg D (2014) Electronic properties of III-V quantum dots. In: Ehrhardt, M, Koprucki T (eds) Multi-band effective mass approximations – advanced mathematical models and numerical techniques, lecture notes in computational science and engineering, vol 94, chap 2. Springer, Cham, pp 57–85 https://doi.org/10.1007/978-3-319-01427-2_2

    Google Scholar 

  67. Scully MO, Zubairy MS (1997) Quantum Optics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511813993

  68. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8752-4

    Book  Google Scholar 

  69. Shields AJ (2007) Semiconductor quantum light sources. Nat Photonics 1(4):215–223. https://doi.org/10.1038/nphoton.2007.46

    Article  ADS  Google Scholar 

  70. Shields AJ, Stevenson RM, Thompson RM, Yuan Z, Kardynal BE. (2002) Generation of single photons using semiconductor quantum dots. In: Chakraborty T, Peeters F, Sivan U (eds) Nano-physics & bio-electronics: a new odyssey, chap 4. Elsevier Science, Amsterdam, pp 111–146. https://doi.org/10.1016/b978-044450993-2/50004-5

    Chapter  Google Scholar 

  71. Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band k\(\cdot \)p theory. Phys Rev B 59:5688–5701. https://doi.org/10.1103/PhysRevB.59.5688

    Article  ADS  Google Scholar 

  72. Strauf S, Jahnke F (2011) Single quantum dot nanolaser. Laser Photonics Rev 5(5):607–633. https://doi.org/10.1002/lpor.201000039

    Article  Google Scholar 

  73. Stuhler J (2015) Quantum optics route to market. Nat Phys 11(4):293–295. https://doi.org/10.1038/nphys3292

    Article  Google Scholar 

  74. Sverdlov V, Ungersboeck E, Kosina H, Selberherr S (2008) Current transport models for nanoscale semiconductor devices. Mater Sci Eng R 58(6):228–270. https://doi.org/10.1016/j.mser.2007.11.001

    Article  Google Scholar 

  75. Thoma A, Schnauber P, Gschrey M, Seifried M, Wolters J, Schulze JH, Strittmatter A, Rodt S, Carmele A, Knorr A, Heindel T, Reitzenstein S (2016) Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments. Phys Rev Lett 116(3):033601. https://doi.org/10.1103/PhysRevLett

  76. Unrau W, Quandt D, Schulze JH, Heindel T, Germann TD, Hitzemann O, Strittmatter A, Reitzenstein S, Pohl UW, Bimberg D (2012) Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl Phys Lett 101(21):211119. https://doi.org/10.1063/1.4767525

    Article  ADS  Google Scholar 

  77. Vasileska D, Goodnick SM, Klimeck G (2010) Computational Electronics–Semiclassical and Quantum Device Modeling and Simulation. CRC Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/b13776

    Book  Google Scholar 

  78. Vogel W, Welsch DG (2006) Quantum optics, 3rd edn. Wiley, Weinheim. https://doi.org/10.1002/3527608524

  79. Walls DF (1979) Evidence for the quantum nature of light. Nature 280(5722):451–454. https://doi.org/10.1038/280451a0

    Article  ADS  Google Scholar 

  80. Wu J, Chen S, Seeds A, Liu H (2015) Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D Appl Phys 48(36):363001. https://doi.org/10.1088/0022-3727/48/36/363001

    Article  Google Scholar 

  81. Wu Y, Zhang G, Guo L, Li X, Qi G (2014) Theoretical simulation of carrier capture and relaxation rates in quantum-dot semiconductor optical amplifiers. J Appl Phys 115(22):224502. https://doi.org/10.1063/1.4882186

    Article  ADS  Google Scholar 

  82. Yuan Z, Kardynal BE, Stevenson RM, Shields AJ, Lobo CJ, Cooper K, Beattie NS, Ritchie DA, Pepper M (2002) Electrically driven single-photon source. Science 295(5552):102–105. https://doi.org/10.1126/science.1066790

    Article  ADS  Google Scholar 

  83. Zwiller V, Aichele T, Benson O (2004) Quantum optics with single quantum dot devices. New J Phys 6:96. https://doi.org/10.1088/1367-2630/6/1/096

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kantner .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kantner, M. (2020). Introduction. In: Electrically Driven Quantum Dot Based Single-Photon Sources. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-39543-8_1

Download citation

Publish with us

Policies and ethics