Skip to main content

Privacy Concerns in Chatbot Interactions

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11970)

Abstract

Chatbots are increasingly used in a commercial context to make product- or service-related recommendations. By doing so, they collect personal information of the user, similar to other online services. While privacy concerns in an online (website-) context are widely studied, research in the context of chatbot-interaction is lacking. This study investigates the extent to which chatbots with human-like cues influence perceptions of anthropomorphism (i.e., attribution of human-like characteristics), privacy concerns, and consequently, information disclosure, attitudes and recommendation adherence. Findings show that a human-like chatbot leads to more information disclosure, and recommendation adherence mediated by higher perceived anthropomorphism and subsequently, lower privacy concerns in comparison to a machine-like chatbot. This result does not hold in comparison to a website; human-like chatbot and website were perceived as equally high in anthropomorphism. The results show the importance of both mediating concepts in regards to attitudinal and behavioral outcomes when interacting with chatbots.

Keywords

  • Chatbots
  • Anthropomorphism
  • Privacy concerns

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39540-7_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-39540-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    Similar to [26], conference presentation is available upon request to the first author.

  2. 2.

    Furthermore, we measured mindful anthropomorphism with three items on 7-point semantic differential scales [32]. A univariate analysis of variance showed no significant main effect of type of entity on mindful anthropomorphism (F(2, 227) = 1.16, p = .314).

References

  1. Araujo, T.: Conversational agent research toolkit: an alternative for creating and managing chatbots for experimental research. (2019). https://doi.org/10.31235/osf.io/9ukyf

  2. Araujo, T.: Living up to the chatbot hype: the influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Comput. Hum. Behav. 85, 183–189 (2018). https://doi.org/10.1016/j.chb.2018.03.051

    CrossRef  Google Scholar 

  3. Baek, T.H., Morimoto, M.: Stay away from me. J. Advert. 41(1), 59–76 (2012). https://doi.org/10.2753/JOA0091-3367410105

    CrossRef  Google Scholar 

  4. Barnes, S.B.: A privacy paradox: social networking in the United States. First Monday 11, 9 (2006)

    CrossRef  Google Scholar 

  5. Baruh, L., et al.: Online privacy concerns and privacy management: a meta-analytical review. J. Commun. 67(1), 26–53 (2017). https://doi.org/10.1111/jcom.12276

    CrossRef  Google Scholar 

  6. Becker-Olsen, K.L.: And now, a word from our sponsor: a look at the effects of sponsored content and banner advertising. J. Advert. 32(2), 17–32 (2003)

    CrossRef  Google Scholar 

  7. Birnbaum, G.E., et al.: What robots can teach us about intimacy: the reassuring effects of robot responsiveness to human disclosure. Comput. Hum. Behav. 63, 416–423 (2016). https://doi.org/10.1016/j.chb.2016.05.064

    CrossRef  Google Scholar 

  8. Boerman, S.C., et al.: Exploring motivations for online privacy protection behavior: insights from panel data. Commun. Res. (2018). https://doi.org/10.1177/0093650218800915

    CrossRef  Google Scholar 

  9. Bol, N., et al.: Understanding the effects of personalization as a privacy calculus: analyzing self-disclosure across health, news, and commerce contexts. J. Comput. Commun. 23, 370–388 (2018). https://doi.org/10.1093/jcmc/zmy020

    CrossRef  Google Scholar 

  10. Chung, M., et al.: Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res., 1–9 (2018). https://doi.org/10.1016/j.jbusres.2018.10.004

  11. Croes, E., Antheunis, M.L.: Can we be friends with a chatbot? A longitudinal study on the process of friendship formation between humans and a social chatbot. Paper presented at the 69th Annual International Communication Association (ICA) Conference (2019)

    Google Scholar 

  12. Crutzen, R., et al.: An artificially intelligent chat agent that answers adolescents’ questions related to sex, drugs, and alcohol: an exploratory study. J. Adolesc. Heal. 48(5), 514–519 (2011). https://doi.org/10.1016/j.jadohealth.2010.09.002

    CrossRef  Google Scholar 

  13. Dabholkar, P.A., Sheng, X.: Consumer participation in using online recommendation agents: effects on satisfaction, trust, and purchase intentions. Serv. Ind. J. 32(9), 1433–1449 (2012). https://doi.org/10.1080/02642069.2011.624596

    CrossRef  Google Scholar 

  14. Dienlin, T., Trepte, S.: Is the privacy paradox a relict of the past? An in-depth analysis of privacy attitudes and privacy behaviors. Eur. J. Soc. Psychol. 45, 285–297 (2015). https://doi.org/10.1002/ejsp.2038

    CrossRef  Google Scholar 

  15. Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transactions. Inf. Syst. Res. 17(1), 61–80 (2006). https://doi.org/10.1287/isre.1060.0080

    CrossRef  Google Scholar 

  16. Van Eeuwen, M.: Mobile conversational commerce: messenger chatbots as the next interface between businesses and consumers. University of Twente (2017)

    Google Scholar 

  17. Epley, N., et al.: On seeing human: a three-factor theory of anthropomorphism. Psychol. Rev. 114(4), 864–886 (2007). https://doi.org/10.1037/0033-295X.114.4.864

    CrossRef  Google Scholar 

  18. Følstad, A., Nordheim, C.B., Bjørkli, C.A.: What makes users trust a chatbot for customer service? An exploratory interview study. In: Bodrunova, S.S. (ed.) INSCI 2018. LNCS, vol. 11193, pp. 194–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01437-7_16

    CrossRef  Google Scholar 

  19. Fournier, S.: Consumers and their brands: developing relationship theory in consumer research. J. Consum. Res. 24(4), 343–353 (1998). https://doi.org/10.1086/209515

    MathSciNet  CrossRef  Google Scholar 

  20. Go, E., Sundar, S.S.: Humanizing chatbots: the effects of visual, identity and conversational cues on humanness perceptions. Comput. Hum. Behav. (2019). https://doi.org/10.1016/j.chb.2019.01.020

    CrossRef  Google Scholar 

  21. Griol, D., et al.: An automatic dialog simulation technique to develop and evaluate interactive conversational agents. Appl. Artif. Intell. 27(9), 759–780 (2013). https://doi.org/10.1080/08839514.2013.835230

    CrossRef  Google Scholar 

  22. Guzman, A.L.: Voices in and of the machine: source orientation toward mobile virtual assistants. Comput. Hum. Behav. 90, 343–350 (2019). https://doi.org/10.1016/j.chb.2018.08.009

    CrossRef  Google Scholar 

  23. Hassanein, K., Head, M.: Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. Int. J. Hum Comput Stud. 65(8), 689–708 (2007). https://doi.org/10.1016/j.ijhcs.2006.11.018

    CrossRef  Google Scholar 

  24. Hayes, A.F.: PROCESS: a versatile computational tool for observed variable mediation, moderation, and conditional process modeling. White Paper, pp. 1–39 (2012). ISBN 978-1-60918-230-4

    Google Scholar 

  25. Hayes, A.F., Preacher, K.J.: Statistical mediation analysis with a multicategorical independent variable. Br. J. Math. Stat. Psychol. 67(3), 451–470 (2014). https://doi.org/10.1111/bmsp.12028

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. Ischen, C., et al.: How important is agency? The persuasive consequences of interacting with a chatbot as a new entity. Paper presented at the Human-Machine Communication ICA Pre-Conference, Washington, D.C. (2019)

    Google Scholar 

  27. Kim, Y., Sundar, S.S.: Anthropomorphism of computers: is it mindful or mindless? Comput. Hum. Behav. 28(1), 241–250 (2012). https://doi.org/10.1016/j.chb.2011.09.006

    CrossRef  Google Scholar 

  28. Ledbetter, A.M.: Measuring online communication attitude: instrument development and validation. Commun. Monogr. 76(4), 463–486 (2009). https://doi.org/10.1080/03637750903300262

    CrossRef  Google Scholar 

  29. Marathe, S., et al.: Who are these power users anyway? Building a psychological profile (2007)

    Google Scholar 

  30. Nass, C., Moon, Y.: Machines and mildlessness: social responses to computers. J. Soc. Issues 56(1), 86–103 (2000)

    CrossRef  Google Scholar 

  31. van Noort, G., Willemsen, L.M.: Online damage control: the effects of proactive versus reactive webcare interventions in consumer-generated and brand-generated platforms. J. Interact. Mark. 26(3), 131–140 (2012). https://doi.org/10.1016/j.intmar.2011.07.001

    CrossRef  Google Scholar 

  32. Powers, A., Kiesler, S.: The advisor robot: tracing people’s mental model from a robot’s physical attributes. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 218–225 (2006). https://doi.org/10.1145/1121241.1121280

  33. Reeves, B., Nass, C.: The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places. Cambrigde University Press, New York (1996)

    Google Scholar 

  34. Sundar, S.S., Kim, J.: Machine heuristic: when we trust computers more than humans with our personal information. In: Proceedings of the 2019 Conference on Human Factors in Computing Systems - CHI 2019, pp. 1–9 (2019). https://doi.org/10.1145/3290605.3300768

  35. Sundar, S.S., Nass, C.: Source orientation in human-computer interaction: programmer, networker, or independent social actor. Commun. Res. 27(6), 683–703 (2000)

    CrossRef  Google Scholar 

  36. Verhagen, T., et al.: Virtual customer service agents: using social presence and personalization to shape online service encounters. J. Comput. Commun. 19(3), 529–545 (2014). https://doi.org/10.1111/jcc4.12066

    CrossRef  Google Scholar 

  37. Westin, A.F.: Privacy and freedom. Wash. Lee Law Rev. 25(1), 166 (1967)

    Google Scholar 

  38. Whang, C.: Voice shopping: the effect of the consumer-voice assistant parasocial relationship on the consumer’s perception and decision making (2018)

    Google Scholar 

  39. Wottrich, V.M., et al.: The role of customization, brand trust, and privacy concerns in advergaming. Int. J. Advert. 36(1), 60–81 (2017). https://doi.org/10.1080/02650487.2016.1186951

    CrossRef  Google Scholar 

  40. Xu, H., et al.: Examining the formation of individual’s privacy concerns: toward an integrative view. In: Proceedings of the International Conference on Information Systems, pp. 1–16 (2008). http://aisel.aisnet.org/icis2008/6

  41. Zajonc, R.B.: Mere exposure: a gateway to the subliminal. Curr. Dir. Psychol. Sci. 10(6), 224–228 (2001). https://doi.org/10.1111/1467-8721.00154

    CrossRef  Google Scholar 

  42. Zarouali, B., et al.: Predicting consumer responses to a chatbot on Facebook. Cyberpsychol. Behav. Soc. Netw. 21(8), 491–497 (2018). https://doi.org/10.1089/cyber.2017.0518

    CrossRef  Google Scholar 

  43. Zhou, L., et al.: Non-local or local brands? A multi-level investigation into confidence in brand origin identification and its strategic implications. J. Acad. Mark. Sci. 38(2), 202–218 (2010). https://doi.org/10.1007/s11747-009-0153-1

    CrossRef  Google Scholar 

Download references

Acknowledgements

This study was funded by the Research Priority Area Communication and its Digital Communication Methods Lab (digicomlab.eu) at the University of Amsterdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Ischen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ischen, C., Araujo, T., Voorveld, H., van Noort, G., Smit, E. (2020). Privacy Concerns in Chatbot Interactions. In: , et al. Chatbot Research and Design. CONVERSATIONS 2019. Lecture Notes in Computer Science(), vol 11970. Springer, Cham. https://doi.org/10.1007/978-3-030-39540-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39540-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39539-1

  • Online ISBN: 978-3-030-39540-7

  • eBook Packages: Computer ScienceComputer Science (R0)