Skip to main content

Distributed Average Tracking in Distributed Convex Optimization

  • Chapter
  • First Online:
Distributed Average Tracking in Multi-agent Systems
  • 603 Accesses

Abstract

The aim of this chapter is to show the usefulness of distributed average tracking in distributed continuous-time time-varying optimization which is of great significance in motion coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results of this chapter are based mainly on [24]. We have added a simulation section which was not included in [24]. See full copyright acknowledgement for non-original material at the end of the chapter.

  2. 2.

    As a special case the initial values can be chosen as \(\xi _j(0)=\psi _j(0)=\phi _j(0)=0, \forall j \in {\mathscr {I}}\).

  3. 3.

    As a special case, the initial values can be chosen as \(\xi _j(0)=\phi _j(0)=0, \forall j \in {\mathscr {I}}\).

References

  1. M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms (Wiley, 2005)

    Google Scholar 

  2. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory (SIAM, 1994)

    Google Scholar 

  3. S. Boyd, L. Vandenbergher, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  4. Y. Cao, W. Ren, Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012)

    Article  MathSciNet  Google Scholar 

  5. F. Chen, Y. Cao, W. Ren, Distributed average tracking of multiple time-varying reference signals with bounded derivatives. IEEE Trans. Autom. Control 57(12), 3169–3174 (2012)

    Article  MathSciNet  Google Scholar 

  6. A. Cherukuri, J. Cortés, Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment, in arXiv:1409.4382 (2014)

  7. J. Cortés, Discontinuous dynamical systems. IEEE Control Syst. Mag. 28(3), 36–73 (2008)

    Article  MathSciNet  Google Scholar 

  8. F. Cucker, S. Smale, Emergent behavior in flocks. IEEE Trans. Autom. Control 5(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  9. G. Droge, H. Kawashima, M.B. Egerstedt, Continuous-time proportional-integral distributed optimisation for networked systems. J. Control. Decis. 1(3), 191–213 (2014)

    Article  Google Scholar 

  10. C. Edwards, S. Spurgeon, Sliding Mode Control: Theory and Applications (Taylor & Francis, 1998)

    Google Scholar 

  11. A. Filippov, Differential Equations with Discontinuous Righthand Sides (Springer, Berlin, 1988)

    Google Scholar 

  12. B. Gharesifard, J. Cortés, Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Autom. Control 59(3), 781–786 (2014)

    Article  MathSciNet  Google Scholar 

  13. B. Johansson, T. Keviczky, M. Johansson, K. Johansson, Subgradient methods and consensus algorithms for solving convex optimization problems, in Proceedings of the IEEE Conference on Decision and Control (2008), pp. 4185–4190

    Google Scholar 

  14. S.S. Kia, J. Cortés, S. Martinez, Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55(5), 254–264 (2015)

    Article  MathSciNet  Google Scholar 

  15. K. Kvaternik, L. Pavel, A continuous-time decentralized optimization scheme with positivity constraints, in Proceedings of the IEEE Conference on Decision and Control (2012), pp. 6801–6807

    Google Scholar 

  16. P. Lin, W. Ren, Y. Song, J. Farrell, Distributed optimization with the consideration of adaptivity and finite-time convergence, in Proceedings of the American Control Conference (2014), pp. 3177–3182

    Google Scholar 

  17. Q. Ling, A. Ribeiro, Decentralized dynamic optimization through the alternating direction method of multipliers. IEEE Trans. Signal Process. 62(5), 1185–1197 (2014)

    Article  MathSciNet  Google Scholar 

  18. J. Lu, C.Y. Tang, Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case. IEEE Trans. Autom. Control 57(9), 2348–2354 (2012)

    Article  MathSciNet  Google Scholar 

  19. A. Nedic, A. Ozdaglar, P. Parrilo, Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    Article  MathSciNet  Google Scholar 

  20. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  21. R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  22. Z. Qu, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles (Springer, Berlin, 2009)

    Google Scholar 

  23. M.G. Rabbat, R.D. Nowak, Quantized incremental algorithms for distributed optimization. IEEE J. Sel. Areas Commun. 23(4), 798–808 (2005)

    Article  Google Scholar 

  24. S. Rahili, W. Ren, Distributed continuous-time convex optimization with time-varying cost functions. IEEE Trans. Autom. Control 62(4), 1590–1605 (2016)

    Article  MathSciNet  Google Scholar 

  25. S. Ram, A. Nedic, V. Veeravalli, Incremental stochastic subgradient algorithms for convex optimization. SIAM J. Optim. 20(2), 691–717 (2009)

    Article  MathSciNet  Google Scholar 

  26. G. Shi, K. Johansson, Y. Hong, Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Autom. Control 58(3), 610–622 (2013)

    Article  MathSciNet  Google Scholar 

  27. A. Simonetto, L. Kester, G. Leus, Distributed time-varying stochastic optimization and utility-based communication, in arXiv:1408.5294 (2014)

  28. J. Slotine, W. Li, Applied Nonlinear Control (Prentice Hall, 1991)

    Google Scholar 

  29. H. Su, X. Wang, Z. Lin, Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)

    Article  MathSciNet  Google Scholar 

  30. W. Su, Traffic Engineering and Time-Varying Convex Optimization. Ph.D. dissertation, (The Pennsylvania State University, 2009)

    Google Scholar 

  31. S.Y. Tu, A. Sayed, Mobile adaptive networks. IEEE J. Sel. Top. Signal Process. 5(4), 649–664 (2011)

    Article  Google Scholar 

  32. J. Wang, N. Elia, A control perspective for centralized and distributed convex optimization, in Proceedings of the European Control Conference (2011), pp. 3800–3805

    Google Scholar 

  33. L. Wang, F. Xiao, Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  34. X. Wang, Y. Hong, Distributed finite-time \(\chi \)-consensus algorithms for multi-agent systems with variable coupling topology. J. Syst. Sci. Complex. 23(2), 209–218 (2010)

    Article  MathSciNet  Google Scholar 

  35. D. Yuan, S. Xu, H. Zhao, Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 41(6), 1715–1724 (2011)

    Article  Google Scholar 

  36. Y. Zhao, Y. Liu, Z. Duan, G. Wen, Distributed average computation for multiple time-varying signals with output measurements. Int. J. Robust Nonlinear Control 26(13), 2899–2915 (2016)

    Article  MathSciNet  Google Scholar 

  37. Y. Zhao, Y. Liu, Z. Li, Z. Duan, Distributed average tracking for multiple signals generated by linear dynamical systems: an edge-based framework. Automatica 75(1), 158–166 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

\(\copyright \) 2017 IEEE. Reprinted, with permission, from Salar Rahili and Wei Ren. “Distributed continuous-time convex optimization with time-varying cost functions” IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1590–1605, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, F., Ren, W. (2020). Distributed Average Tracking in Distributed Convex Optimization. In: Distributed Average Tracking in Multi-agent Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-39536-0_10

Download citation

Publish with us

Policies and ethics