Skip to main content

Modelling Alzheimer’s People Brain Using Augmented Reality for Medical Diagnosis Analysis

  • 2943 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1131)

Abstract

Alzheimer’s Disease (AD) in adults is characterized by gradual memory loss for old age people. Alzheimer’s brain have impact on affecting brain, include loss of memory, difficulty in thinking, language and solving problems symptoms. Heart issues, depression, diabetes and high blood pressure pose a higher risk of causing Alzheimer’s disease. The Alzheimer’s disease in the brain proteins build up to form structures known as plaques, which are the abnormal clumps in the brain, and tangles which are the bundles of fibbers in the brain. This leads to loss of brain tissue, nerve cells connections and lead to death of nerve cells. In their brain there is a shortage of chemicals. These chemical messengers around the brain help to transmit signals whose shortage causes the signals do not transmit effectively. The above symptoms were visualized as AR (Augmented Reality) model to assist doctors for medical analysis. Augmented Reality act as a extremity tool for findings, supporting and analyse the Alzheimer’s Disease. Understanding the AR brain model enhance the analysis of the brain with the technical exploration of tracking, visualization technology layer by layer level, integrated feedback about different parts of the brain function which plays a major role in clinical evaluation to treat the Alzheimer’s disease. Microglia are a type of cell that initiate immune responses in the brain and spinal cord. When AD is present, microglia interpret the beta-amyloid plaque as cell injury. To reduce or control the inflammatory response and brain shrinking can be visualized using Augmented Reality.

Keywords

  • Brain
  • Memory loss
  • Alzheimer’s disease
  • Augmented Reality
  • Visualization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39512-4_82
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-39512-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 1.
Fig. 2.

References

  1. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997)

    CrossRef  Google Scholar 

  2. Höllerer, T.: User interfaces for mobile augmented reality systems, Doctoral dissertation, Columbia University (2004)

    Google Scholar 

  3. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.: Augmented reality technologies, systems and applications. Multimed. Tools Appl. 51(1), 341–477 (2011)

    CrossRef  Google Scholar 

  4. Blanco-Fernández, Y., López-Nores, M., Pazos-Arias, J.J., Gil-Solla, A., Ramos-Cabrer, M., García-Duque, J.: REENACT: a step forward in immersive learning about human history by augmented reality, role playing and social networking. Expert Syst. Appl. 41(10), 4811–4828, 213 (2014)

    Google Scholar 

  5. Chun, J., Lee, S.: A vision-based 3D hand interaction for marker-based AR. Int. J. Multimed. Ubiquit. Eng. 7(3), 51–58 (2012)

    Google Scholar 

  6. Hsieh, M.C., Lee, J.J.: Preliminary study of VR and AR applications in medical and healthcare education. J. Nurs. Health Stud. 3(1), 1 (2018)

    CrossRef  Google Scholar 

  7. Glockner, H., Jannek, K., Mahn, J., Theis, B.: Augmented reality in logistics: changing the way we see logistics–a DHL perspective. DHL: Customer Solutions & Innovation 28 (2014)

    Google Scholar 

  8. Kesim, M., Ozarslan, Y.: Augmented reality in education: current technologies and the potential for education. Procedia-Soc. Behav. Sci. 47, 297–302 (2012)

    CrossRef  Google Scholar 

  9. Sielhorst, T., Feuerstein, M., Navab, N.: Advanced medical displays: a literature review of augmented reality. J. Disp. Technol. 4(4), 451–467 (2008)

    CrossRef  Google Scholar 

  10. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    CrossRef  Google Scholar 

  11. Brotos, A.: Interactive augmented reality panel interface for Android (2015)

    Google Scholar 

  12. Van Krevelen, D., Poelman, R.: Augmented reality: technologies, applications, and limitations, Dep. Comput. Sci. Vrije Univ., Amsterdam (2007)

    Google Scholar 

  13. Ha, H.G., Hong, J.: Augmented reality in medicine. Hanyang Med. Rev. 36(4), 242–247 (2016)

    CrossRef  Google Scholar 

  14. Harders, M., Bianchi, G., Knoerlein, B.: Multimodal augmented reality in medicine. In: International Conference on Universal Access in Human-Computer Interaction, pp. 652–658. Springer, Heidelberg (2007)

    Google Scholar 

  15. Edwards, P.J., King Jr., A.P., Maurer, C.R., de Cunha, D.A., Hawkes, D.J., Hill, D.L.G., Gaston, R.P., Fenlon, M.R., Chandra, S., Strong, A.J., Chandler, C.L., Richards, A., Gleeson, M.E.: Design and evaluation of a system for microscope assisted guided interventions (MAGI). In: Taylor, C., Colchester, A. (eds.) MICCAI 1999: Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention. LNCS, vol. 1679, pp. 842–851. Springer, Heidelberg (1999)

    Google Scholar 

  16. Parkhomenko, E., Safiullah, S., Walia, S., Owyong, W., Lin, C., O’Leary., et al.: MP26-20 virtual-reality projected renal models with urolithiasis as an educational and preoperative planning tool for nephrolithotomy: a pilot study. Am. Urol. Assoc. Conf. 199(45), e345 (2018)

    Google Scholar 

  17. Alberti, O., Dorward, N.L., Kitchen, N.D., Thomas, D.G.: Neuronavigation-the impact of operating time. Stereotact. Funct. Neurosurg. 1997(68), 44–48 (1997)

    CrossRef  Google Scholar 

  18. Hanna, M.G., Ahmed, I., Nine, J., Prajapati, S., Pantanowitz, L.: Augmented reality technology using Microsoft HoloLens in anatomic pathology. Arch. Pathol. Lab. Med. 142(5), 638–644 (2018)

    CrossRef  Google Scholar 

  19. Monsky, W.L., James, R., Seslar, S.S.: Virtual and augmented reality applications in medicine and surgery-the fantastic voyage is here. Anat. Physiol. 9(1), 1–6 (2019)

    Google Scholar 

  20. Pratt, P., Ives, M., Lawton, G., Simmons, J., Radev, N., Spyropoulou, L., Amiras, D.: Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur. Radiol. Exp. 2(1), 2 (2018)

    CrossRef  Google Scholar 

  21. De Paolis, L.T., Aloisio, G.: Augmented reality in minimally invasive surgery. In: Advances in Biomedical Sensing, Measurements, Instrumentation and Systems, pp. 305–320. Springer, Heidelberg (2010)

    Google Scholar 

  22. Zevallos, N., Srivatsan, R.A., Salman, H., Li, L., Qian, J., Saxena, S., Xu, M., Patath, K., Choset, H.: A surgical system for automatic registration, stiffness mapping and dynamic image overlay. In: 2018 International Symposium on Medical Robotics (ISMR), pp. 1–6. IEEE, March 2018 (2018)

    Google Scholar 

  23. Patath, K., Srivatsan, R.A., Zevallos, N., Choset, H.: Dynamic texture mapping of 3D models for stiffness map visualization. In: Workshop on Medical Imaging, IEEE/RSJ International Conference on Intelligent Robots and Systems (2017)

    Google Scholar 

  24. Soler, L., Nicolau, S., Schmid, J., Koehl, C., Marescaux, J., Pennec, X., Ayache, N.: Virtual reality and augmented reality in digestive surgery. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 278–279. IEEE, November 2004

    Google Scholar 

  25. Kalkofen, D., Reitinger, B., Risholm, P., Bornik, A., Beichel, R., Schmalstieg, D., Samset, E.: Integrated medical workflow for augmented reality applications. In: International Conference on Medical Image Computing and Computer Assisted Intervention (2006)

    Google Scholar 

  26. Squire, L.R.: Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 4(3), 232–243 (1992)

    CrossRef  Google Scholar 

  27. Dharani, K.: The Biology of Thought: A Neuronal Mechanism in the Generation of Thought-A New Molecular Model, pp. 53–74. Academic Press, Cambridge (2014)

    Google Scholar 

  28. Morris, R.G.: Dementia and the functioning of the articulatory loop system. Cogn. Neuropsychol. 1(2), 143–157 (1984)

    CrossRef  Google Scholar 

  29. Mayes, A.R.: Learning and memory disorders and their assessment. Neuropsychologia 24(1), 25–39 (1986)

    CrossRef  Google Scholar 

  30. Chiu, M.-J., Chen, T.-F., Yip, P.-K., Hua, M.-S., Tang, L.-Y.: Behavioral and psychologic symptoms in different types of dementia. J. Formos. Med. Assoc. 105(7), 556–562 (2006)

    CrossRef  Google Scholar 

  31. Montine, T.J., Cholerton, B.A., Corrada, M.M., Edland, S.D., Flanagan, M.E., Hemmy, L.S., White, L.R.: Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimers Res. Ther. 11(1), 22 (2019)

    CrossRef  Google Scholar 

  32. Alexopoulos, G.S., Meyers, B.S., Young, R.C., Mattis, S., Kakuma, T.: The course of geriatric depression with “reversible dementia”: a controlled study. Am. J. Psychiatry 150, 1693 (1993)

    CrossRef  Google Scholar 

  33. Arlt, S., Lindner, R., Rösler, A., von Renteln-Kruse, W.: Adherence to medication in patients with dementia. Drugs Aging 25(12), 1033–1047 (2008)

    CrossRef  Google Scholar 

  34. Raina, P., Santaguida, P., Ismaila, A., Patterson, C., Cowan, D., Levine, M., Booker, L., Oremus, M.: Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann. Intern. Med. 148(5), 379–397 (2008)

    CrossRef  Google Scholar 

  35. Blattgerste, J., Renner, P., Pfeiffer, T.: Augmented reality action assistance and learning for cognitively impaired people: a systematic literature review. In: PETRA, pp. 270–279, June 2019

    Google Scholar 

  36. Viglialoro, R.M., Condino, S., Turini, G., Carbone, M., Ferrari, V., Gesi, M.: Review of the augmented reality systems for shoulder rehabilitation. Information 10(5), 154 (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swashi Muthammal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ramar, R., Muthammal, S., Dhamodharan, T., Rajendran, G.K. (2020). Modelling Alzheimer’s People Brain Using Augmented Reality for Medical Diagnosis Analysis. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds) Intelligent Human Systems Integration 2020. IHSI 2020. Advances in Intelligent Systems and Computing, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-39512-4_82

Download citation