A Novel Heuristic Mechanism to Formalize Online Behavior Through Search Engine Credibility

  • Debora Di Caprio
  • Francisco J. Santos-ArteagaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1131)


The current paper presents a heuristic evaluation mechanism describing the online search behavior of decision makers (DMs) as determined by the credibility of the rankings displayed by search engines. We formalize the incentives of DMs to observe and evaluate alternatives through a pairwise comparison function that accounts for both the ranking positions displayed and the credibility of the search engine. The resulting evaluation framework is implemented to analyze the effects that ranking credibility has on the online search behavior of DMs. In particular, we compare the cumulative frequencies derived from the implementation of the pairwise heuristic evaluation mechanism with the average traffic shares of the different items ranked within a Google result page.


Search engine Ranking credibility Online evaluations Uncertainty Subjective perception 


  1. 1.
    Bartels, D.M., Johnson, E.J.: Connecting cognition and consumer choice. Cognition 135, 47–51 (2015)CrossRefGoogle Scholar
  2. 2.
    Chater, N.: Can cognitive science create a cognitive economics? Cognition 135, 52–55 (2015)CrossRefGoogle Scholar
  3. 3.
    Chitika: The Value of Google Result Positioning. Chitika Insights 7 June 2013. Chitika, Westborough (2013)Google Scholar
  4. 4.
    Di Caprio, D., Santos-Arteaga, F.J., Tavana, M.: The optimal sequential information acquisition structure: a rational utility-maximizing perspective. Appl. Math. Model. 38, 3419–3435 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Epstein, R., Robertson, R.E.: The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Natl. Acad. Sci. 112, E4512–E4521 (2015)CrossRefGoogle Scholar
  6. 6.
    European Commission: Online platforms. Special Eurobarometer 447 - April 2016. European Union (2016)Google Scholar
  7. 7.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manag. 36, 207–227 (2000)CrossRefGoogle Scholar
  8. 8.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  9. 9.
    Pan, B., Hembrooke, H., Joachims, T., Lorigo, L., Gay, G., Granka, L.: In Google we trust: users’ decisions on rank, position, and relevance. J. Comput.-Mediat. Commun. 12, 801–823 (2007)CrossRefGoogle Scholar
  10. 10.
    Tavana, M., Di Caprio, D., Santos-Arteaga, F.J.: A multi-criteria perception-based strict-ordering algorithm for identifying the most-preferred choice among equally-evaluated alternatives. Inf. Sci. 381, 322–340 (2017)CrossRefGoogle Scholar
  11. 11.
    Tavana, M., Di Caprio, D., Santos-Arteaga, F.J.: Modeling sequential information acquisition behavior in rational decision making. Decis. Sci. 47, 720–761 (2016)CrossRefGoogle Scholar
  12. 12.
    Tavana, M., Santos-Arteaga, F.J., Di Caprio, D., Tierney, K.: Modeling signal-based decisions in online search environments: a non-recursive forward-looking approach. Inf. Manag. 53, 207–226 (2016)CrossRefGoogle Scholar
  13. 13.
    Tavana, M., Di Caprio, D., Santos-Arteaga, F.J.: An ordinal ranking criterion for the subjective evaluation of alternatives and exchange reliability. Inf. Sci. 317, 295–314 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Debora Di Caprio
    • 1
  • Francisco J. Santos-Arteaga
    • 2
    Email author
  1. 1.York UniversityTorontoCanada
  2. 2.Free University of BolzanoBolzanoItaly

Personalised recommendations