Skip to main content

Radiomics as Applied in Precision Medicine

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

Radiomics can be defined as the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with various modalities, including nuclear medicine modalities of Single photon emission computed tomography (SPECT) and Positron emission tomography (PET). We describe it as the process of transferring the medical imaging interpretation knowledge and skill set from humans to machines in a way that they can see more, process more information, and have deeper insights into what the disease is and how it behaves and might respond to therapeutic intervention. Radiomics methods can be applied across various cancers to identify tumor phenotype characteristics in the images that correlate with their likelihood of survival, as well as their association with the underlying driving biology. Identifying this characteristic set of features called tumor signature holds tremendous value in predicting cancer behavior and progression, which in turn has the potential to predict cancer’s response to various therapeutic options (Fig. 3.1). Moreover, we are beginning to see the application of radiomics principles in non-oncologic indications as well, such as cardiovascular disease. In allowing us to have this capacity, radiomics holds the promise of driving the engine of precision medicine. However, there are numerous challenges in the validation methods needed to establish radiomics as a clinically viable solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook GJ, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54(1):19–26.

    Article  PubMed  Google Scholar 

  2. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells – what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Husemann Y, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68.

    Article  PubMed  CAS  Google Scholar 

  6. Goubran HA, et al. Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis. 2014;7:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013;31(17):2205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Funahashi Y, et al. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models. Cancer Sci. 2014;105(10):1334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quintela-Fandino M, et al. (18)F-fluoromisonidazole PET and activity of neoadjuvant Nintedanib in early HER2-negative breast cancer: a window-of-opportunity randomized trial. Clin Cancer Res. 2017;23(6):1432–41.

    Article  CAS  PubMed  Google Scholar 

  10. Shackleton M, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chowdhury R, et al. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol. 2014;87(1038):20140065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar V, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed  Google Scholar 

  15. Tsujikawa T, et al. (18)F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer. Ann Nucl Med. 2017;31(9):678–85.

    Article  PubMed  Google Scholar 

  16. Chalkidou A, O'Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10(5):e0124165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.

    Article  PubMed  Google Scholar 

  18. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.

    Google Scholar 

  19. Benjamini Y, Yekutieli D. Quantitative trait loci analysis using the false discovery rate. Genetics. 2005;171(2):783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Methodol. 2002;64:479–98.

    Article  Google Scholar 

  21. Desbordes P, et al. Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier. PLoS One. 2017;12(3):e0173208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vidyasagar M. Machine learning methods in the computational biology of cancer. Proc Math Phys Eng Sci. 2014;470(2167):20140081.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bunea F, et al. Penalized least squares regression methods and applications to neuroimaging. NeuroImage. 2011;55(4):1519–27.

    Article  PubMed  Google Scholar 

  24. de Vlaming R, Groenen PJ. The current and future use of ridge regression for prediction in quantitative genetics. Biomed Res Int. 2015;2015:143712.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fort G, Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics. 2005;21(7):1104–11.

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Sillanpaa MJ. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor Appl Genet. 2012;125(3):419–35.

    Article  CAS  PubMed  Google Scholar 

  27. Foley KG, et al. Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur Radiol. 2017;28(1):428–36.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bashir U, et al. The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer. EJNMMI Res. 2017;7(1):60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leijenaar RT, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013;52(7):1391–7.

    Article  CAS  PubMed  Google Scholar 

  30. Lovat E, et al. The effect of post-injection 18F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1. EJNMMI Res. 2017;7(1):35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shiri I, et al. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27:4498.

    Article  PubMed  Google Scholar 

  32. Reuze S, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8(26):43169–79.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Galavis PE, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49(7):1012–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le Pogam A, et al. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal. 2013;17(8):877–91.

    Article  PubMed  Google Scholar 

  35. Teo BK, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. 2007;48(5):802–10.

    PubMed  Google Scholar 

  36. Bolouri MS, et al. Triple-negative and non-triple-negative invasive breast cancer: association between MR and fluorine 18 fluorodeoxyglucose PET imaging. Radiology. 2013;269(2):354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vallieres M, et al. Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept. Phys Med Biol. 2017;62:8536.

    Article  PubMed  Google Scholar 

  38. Staff RT, et al. Texture analysis of divers’ brains using 99Tcm-HMPAO SPET. Nucl Med Commun. 1995;16(6):438–42.

    Article  CAS  PubMed  Google Scholar 

  39. Staff, R.T, et al. Decompression illness in sports divers detected with technetium-99m-HMPAO SPECT and texture analysis. J Nucl Med. 1996;37(7):1154–8.

    Google Scholar 

  40. Meier A, et al. Application of texture analysis to ventilation SPECT/CT data. Comput Med Imaging Graph. 2011;35(6):438–50.

    Article  PubMed  Google Scholar 

  41. Martinez-Murcia FJ, et al. Parametrization of textural patterns in 123I-ioflupane imaging for the automatic detection of Parkinsonism. Med Phys. 2014;41(1):012502.

    Article  CAS  PubMed  Google Scholar 

  42. Rahmim A, et al. Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. Neuroimage Clin. 2016;12:e1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rajkumar V, et al. Texture analysis of (125)I-A5B7 anti-CEA antibody SPECT differentiates metastatic colorectal cancer model phenotypes and anti-vascular therapy response. Br J Cancer. 2015;112(12):1882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Limkin EJ, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol. 2017;28(6):1191–206.

    Article  CAS  PubMed  Google Scholar 

  45. Shaikh F, et al. Technical challenges in clinical applications of radiomics. J Clin Oncol Clin Cancer Informat. 2017;1:1–8.

    Google Scholar 

  46. Lartizien C, et al. Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform. 2014;18(3):946–55.

    Article  CAS  PubMed  Google Scholar 

  47. Aerts HJ, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    Article  CAS  PubMed  Google Scholar 

  48. Ha S, et al. Metabolic Radiomics for pretreatment 18F-FDG PET/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci Rep. 2017;7(1):1556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lambin P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheng NM, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42(3):419–28.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng NM, Fang YH, Yen TC. The promise and limits of PET texture analysis. Ann Nucl Med. 2013;27(9):867–9.

    Article  CAS  PubMed  Google Scholar 

  52. Cook GJ, et al. Non-small cell lung cancer treated with Erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276(3):883–93.

    Article  PubMed  Google Scholar 

  53. Knogler T, et al. Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma: comparison with F-18-FDG PET. Med Phys. 2014;41(12):121904.

    Article  PubMed  CAS  Google Scholar 

  54. Panth KM, et al. Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol. 2015;116(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  55. Pyka T, et al. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol. 2015;10:100.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pyka T, et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging. 2016;43(1):133–41.

    Article  PubMed  Google Scholar 

  57. Tixier F, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52(3):369–78.

    Article  PubMed  Google Scholar 

  58. Vaidya M, et al. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102(2):239–45.

    Article  PubMed  Google Scholar 

  59. Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55(7):1822–30.

    Article  PubMed  Google Scholar 

  60. Chicklore S, et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40(1):133–40.

    Article  PubMed  Google Scholar 

  61. de Jong EE, et al. [18F]FDG PET/CT-based response assessment of stage IV non-small cell lung cancer treated with paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches. Eur J Nucl Med Mol Imaging. 2017;44(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  62. Ganeshan B, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22(4):796–802.

    Article  PubMed  Google Scholar 

  63. Hatt M, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  64. Engan K, et al. Exploratory data analysis of image texture and statistical features on myocardium and infarction areas in cardiac magnetic resonance images. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5728–31.

    Google Scholar 

  65. Kotu LP, et al. Probability mapping of scarred myocardium using texture and intensity features in CMR images. Biomed Eng Online. 2013;12:91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Awad J, et al. Texture analysis of carotid artery atherosclerosis from three-dimensional ultrasound images. Med Phys. 2010;37(4):1382–91.

    Article  PubMed  Google Scholar 

  67. Coleman DP, et al. Development and validation of an in vivo analysis tool to identify changes in carotid plaque tissue types in serial 3-D ultrasound scans. Ultrasound Med Biol. 2005;31(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  68. Madycki G, Staszkiewicz W, Gabrusiewicz A. Carotid plaque texture analysis can predict the incidence of silent brain infarcts among patients undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg. 2006;31(4):373–80.

    Article  CAS  PubMed  Google Scholar 

  69. Niu L, et al. Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis. PLoS One. 2013;8(10):e76880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kotze CW, et al. CT signal heterogeneity of abdominal aortic aneurysm as a possible predictive biomarker for expansion. Atherosclerosis. 2014;233(2):510–7.

    Article  CAS  PubMed  Google Scholar 

  71. Aghini-Lombardi F, et al. Early textural and functional alterations of left ventricular myocardium in mild hypothyroidism. Eur J Endocrinol. 2006;155(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  72. Adjeroh DA, Kandaswamy U, Odom JV. Texton-based segmentation of retinal vessels. J Opt Soc Am A Opt Image Sci Vis. 2007;24(5):1384–93.

    Article  PubMed  Google Scholar 

  73. Histace A, Matuszewski B, Zhang Y. Segmentation of myocardial boundaries in tagged cardiac MRI using active contours: a gradient-based approach integrating texture analysis. Int J Biomed Imaging. 2009;2009:983794.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Noce A, Triboulet J, Poignet P. Efficient tracking of the heart using texture. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4480–3.

    Google Scholar 

  75. Bagci U, et al. Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images. PLoS One. 2013;8(2):e57105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mu W, et al. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG PET images. Phys Med Biol. 2015;60(13):5123–39.

    Article  PubMed  Google Scholar 

  77. Shiradkar R, et al. Radiomics based targeted radiotherapy planning (rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol. 2016;11(1):148.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yu H, et al. Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys. 2009;75(2):618–25.

    Article  PubMed  Google Scholar 

  79. https://www.nlm.nih.gov/healthit/snomedct/. Accessed 12 Jun 2017.

  80. Bodenreider O, Stevens R. Bio-ontologies: current trends and future directions. Brief Bioinform. 2006;7(3):256–74.

    Article  CAS  PubMed  Google Scholar 

  81. Schulz S, Marko K, Suntisrivaraporn B. Formal representation of complex SNOMED CT expressions. BMC Med Inform Decis Mak. 2008;8(Suppl 1):S9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schulz S, Suntisrivaraporn B, Baader F. SNOMED CT’s problem list: ontologists’ and logicians’ therapy suggestions. Stud Health Technol Inform. 2007;129(Pt 1):802–6.

    PubMed  Google Scholar 

  83. Schulz S, et al. SNOMED reaching its adolescence: ontologists’ and logicians’ health check. Int J Med Inform. 2009;78(Suppl 1):S86–94.

    Article  PubMed  Google Scholar 

  84. Bromuri S, et al. Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms. J Biomed Inform. 2014;51:165–75.

    Article  PubMed  Google Scholar 

  85. Friedman C, Hripcsak G. Natural language processing and its future in medicine. Acad Med. 1999;74(8):890–5.

    Article  CAS  PubMed  Google Scholar 

  86. Friedman C, et al. Representing information in patient reports using natural language processing and the extensible markup language. J Am Med Inform Assoc. 1999;6(1):76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohno-Machado L, Nadkarni P, Johnson K. Natural language processing: algorithms and tools to extract computable information from EHRs and from the biomedical literature. J Am Med Inform Assoc. 2013;20(5):805.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Powell RT, et al. Identification of histological correlates of overall survival in lower grade gliomas using a bag-of-words paradigm: a preliminary analysis based on Hematoxylin & Eosin Stained Slides from the lower grade glioma cohort of the Cancer genome atlas. J Pathol Inform. 2017;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Soguero-Ruiz C, et al. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records. IEEE J Biomed Health Inform. 2016;20(5):1404–15.

    Article  PubMed  Google Scholar 

  90. Hripcsak G, et al. Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med. 1995;122(9):681–8.

    Article  CAS  PubMed  Google Scholar 

  91. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc. 2011;18(5):544–51.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bird S, Klein E, Loper E. Natural language processing with Python – analyzing text with the natural language toolkit. Sebastopol, CA: O'Reilly Media; 2009.

    Google Scholar 

  93. Garla V, et al. The Yale cTAKES extensions for document classification: architecture and application. J Am Med Inform Assoc. 2011;18(5):614–20.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Savova GK, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Moving toward precision medicine. Lancet. 2011;378(9804):1678.

    Google Scholar 

  96. National Research Council. D.o.E.a.L.S., Committee on a framework for developing a new taxonomy of disease, toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press; 2011.

    Google Scholar 

  97. Jin JY, Kong FM. Personalized radiation therapy (PRT) for lung cancer. Adv Exp Med Biol. 2016;890:175–202.

    Article  PubMed  Google Scholar 

  98. http://www.healthmyne.com. Accessed 9 Jun 2017.

  99. Szczypinski PM, et al. MaZda—a software package for image texture analysis. Comput Methods Prog Biomed. 2009;94(1):66–76.

    Article  Google Scholar 

  100. http://www.oncoradiomics.com. Accessed 9 Jun 2017.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, F., Franc, B., Mulero, F. (2020). Radiomics as Applied in Precision Medicine. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics