Hassan, A., Adnan, H.: IOP Conference Series: Earth and Environmental Science, vol. 117 (2018)
Google Scholar
Supardi, A., Yaakob, J., Adnan, H.: Performance bond: conditional or unconditional, MPRA Paper 34007. University Library of Munich, Germany, revised 2009 (2009). https://ideas.repec.org/p/pra/mprapa/34007.html
Kim, S.B., Han, K.S., Rim, H.C., Myaeng, S.H.: Some effective techniques for Naive Bayes text classification. IEEE Trans. Knowl. Data Eng. 18(11), 1457 (2006)
CrossRef
Google Scholar
Mahfud, F.K.R., Tjahyanto, A.: 2017 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 220–225 (2017)
Google Scholar
Onan, A., Korukoğlu, S., Bulut, H.: Ensemble of keyword extraction methods and classifiers in text classification. Expert Syst. Appl. 57, 232 (2016)
CrossRef
Google Scholar
Srivasatava, S.K., Kumari, R., Singh, S.K.: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 345–349 (2017)
Google Scholar
Wang, R., Chen, G., Sui, X.: Multi label text classification method based on co-occurrence latent semantic vector space. Procedia Comput. Sci. 131, 756 (2018)
CrossRef
Google Scholar
Souza, E., Costa, D., Castro, D.W., Vitório, D., Teles, I., Almeida, R., Alves, T., Oliveira, A.L.I., Gusmão, C.: Characterising text mining: a systematic mapping review of the Portuguese language. IET Software 12(2), 49 (2018)
CrossRef
Google Scholar
Hotho, A., Nürnberger, A., Paass, G.: A brief survey of text mining. LDV Forum GLDV J. Comput. Linguist. Lang. Technol. 20, 19 (2005)
Google Scholar
Mirończuk, M.M., Protasiewicz, J.: A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 106, 36 (2018)
CrossRef
Google Scholar
Lan, M., Tan, C.-L., Low, H.-B.: Proposing a new term weighting scheme for text categorization. In: Proceedings of the 21st national conference on Artificial intelligence - Volume 1 (AAAI 2006). AAAI Press, pp. 763–768 (2006)
Google Scholar
Jiang, H., Li, P., Hu, X., Wang, S.: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, pp. 294–298. IEEE (2009)
Google Scholar
De Silva, J., Haddela, P.S.: 2013 IEEE 8th International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, pp. 381–386. IEEE (2013)
Google Scholar
Zhang, W., Yoshida, T., Tang, X.: 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, Singapore, pp. 108–113. IEEE (2008)
Google Scholar
Liu, C., Wang, W., Wang, M., Lv, F., Konan, M.: An efficient instance selection algorithm to reconstruct training set for support vector machine. Knowl.-Based Syst. 116, 58 (2017)
CrossRef
Google Scholar
Hochbaum, D.S., Baumann, P.: Sparse computation for large-scale data mining. IEEE Trans. Big Data 2(2), 151 (2016)
CrossRef
Google Scholar
Breiman, L.: Mach. Learn. 45(1), 5 (2001). https://doi.org/10.1023/A:1010933404324
CrossRef
Google Scholar
Xu, Q., Zhang, M., Gu, Z., Pan, G.: Neurocomputing (2018)
Google Scholar
Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intell. Syst. 18(5), 16 (2003)
CrossRef
Google Scholar
Jeni, L.A., Cohn, J.F., De La Torre, F.: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, pp. 245–251. IEEE (2013). https://doi.org/10.1109/ACII.2013.47. http://ieeexplore.ieee.org/document/6681438/
Roychoudhury, S., Bellarykar, N., Kulkarni, V.: 2016 IEEE 20th International Enterprise Distributed Object Computing Conference (EDOC), pp. 1–10 (2016)
Google Scholar
Silalahi, M., Hardiyati, R., Nadhiroh, I.M., Handayani, T., Amelia, M., Rahmaida, R.: 2018 International Conference on Information and Communications Technology (ICOIACT), pp. 515–519 (2018)
Google Scholar
Chandra, N., Khatri, S.K., Som, S.: 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 348–354 (2017)
Google Scholar
Mishu, S.Z., Rafiuddin, S.M.: 2016 19th International Conference on Computer and Information Technology (ICCIT), pp. 409–413 (2016)
Google Scholar
Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555 (2017)
CrossRef
Google Scholar