Skip to main content

A Text Classification Model to Identify Performance Bonds Requirement in Public Bidding Notices

  • 745 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1130)

Abstract

A performance bond is a means of guaranteeing that a product that will be delivered by the seller in a timely and workmanlike manner. To verify whether a performance bond has been laid down in a bidding notice, an assessment through an internal auditing process is made periodically, but it can be costly and take longer than the available time to conclude an audit engagement. We propose to explore and apply algorithms to create a model able to identify bidding notices that demand performance bonds, to make the assessment process more efficient. We applied Four different classification algorithms (SVM, kNN, Random Forest, and Naive Bayes) on two different vector space representations (term frequency and term frequency inverse-document frequency). Random Forest with term-frequency produced the best model, which achieved \(F_{1}\)-score of 0.933 on the test set. The promising results show the model created could help decrease the time and effort spent on verifying the performance bonds requirement on bidding notices.

Keywords

  • Public bidding notice
  • Performance bonds
  • Text mining
  • Classification
  • Machine learning
  • Random forest
  • SVM
  • K-Nearest Neighbors
  • Multinomial Naive Bayes
  • Term frequency
  • Inverse document frequency

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39442-4_50
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-39442-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    Lei 8.666, de 21 de junho de 1993 – http://www.planalto.gov.br/ccivil_03/Leis/l8666cons.htm.

  2. 2.

    https://www.comprasgovernamentais.gov.br/.

  3. 3.

    http://www.xpdfreader.com/.

  4. 4.

    http://python-docx.readthedocs.io/en/latest/.

  5. 5.

    https://www.nltk.org/.

  6. 6.

    http://scikit-learn.org/stable/index.html.

  7. 7.

    http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction.

References

  1. Hassan, A., Adnan, H.: IOP Conference Series: Earth and Environmental Science, vol. 117 (2018)

    Google Scholar 

  2. Supardi, A., Yaakob, J., Adnan, H.: Performance bond: conditional or unconditional, MPRA Paper 34007. University Library of Munich, Germany, revised 2009 (2009). https://ideas.repec.org/p/pra/mprapa/34007.html

  3. Kim, S.B., Han, K.S., Rim, H.C., Myaeng, S.H.: Some effective techniques for Naive Bayes text classification. IEEE Trans. Knowl. Data Eng. 18(11), 1457 (2006)

    CrossRef  Google Scholar 

  4. Mahfud, F.K.R., Tjahyanto, A.: 2017 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 220–225 (2017)

    Google Scholar 

  5. Onan, A., Korukoğlu, S., Bulut, H.: Ensemble of keyword extraction methods and classifiers in text classification. Expert Syst. Appl. 57, 232 (2016)

    CrossRef  Google Scholar 

  6. Srivasatava, S.K., Kumari, R., Singh, S.K.: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 345–349 (2017)

    Google Scholar 

  7. Wang, R., Chen, G., Sui, X.: Multi label text classification method based on co-occurrence latent semantic vector space. Procedia Comput. Sci. 131, 756 (2018)

    CrossRef  Google Scholar 

  8. Souza, E., Costa, D., Castro, D.W., Vitório, D., Teles, I., Almeida, R., Alves, T., Oliveira, A.L.I., Gusmão, C.: Characterising text mining: a systematic mapping review of the Portuguese language. IET Software 12(2), 49 (2018)

    CrossRef  Google Scholar 

  9. Hotho, A., Nürnberger, A., Paass, G.: A brief survey of text mining. LDV Forum GLDV J. Comput. Linguist. Lang. Technol. 20, 19 (2005)

    Google Scholar 

  10. Mirończuk, M.M., Protasiewicz, J.: A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 106, 36 (2018)

    CrossRef  Google Scholar 

  11. Lan, M., Tan, C.-L., Low, H.-B.: Proposing a new term weighting scheme for text categorization. In: Proceedings of the 21st national conference on Artificial intelligence - Volume 1 (AAAI 2006). AAAI Press, pp. 763–768 (2006)

    Google Scholar 

  12. Jiang, H., Li, P., Hu, X., Wang, S.: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, pp. 294–298. IEEE (2009)

    Google Scholar 

  13. De Silva, J., Haddela, P.S.: 2013 IEEE 8th International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, pp. 381–386. IEEE (2013)

    Google Scholar 

  14. Zhang, W., Yoshida, T., Tang, X.: 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, Singapore, pp. 108–113. IEEE (2008)

    Google Scholar 

  15. Liu, C., Wang, W., Wang, M., Lv, F., Konan, M.: An efficient instance selection algorithm to reconstruct training set for support vector machine. Knowl.-Based Syst. 116, 58 (2017)

    CrossRef  Google Scholar 

  16. Hochbaum, D.S., Baumann, P.: Sparse computation for large-scale data mining. IEEE Trans. Big Data 2(2), 151 (2016)

    CrossRef  Google Scholar 

  17. Breiman, L.: Mach. Learn. 45(1), 5 (2001). https://doi.org/10.1023/A:1010933404324

    CrossRef  Google Scholar 

  18. Xu, Q., Zhang, M., Gu, Z., Pan, G.: Neurocomputing (2018)

    Google Scholar 

  19. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intell. Syst. 18(5), 16 (2003)

    CrossRef  Google Scholar 

  20. Jeni, L.A., Cohn, J.F., De La Torre, F.: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, pp. 245–251. IEEE (2013). https://doi.org/10.1109/ACII.2013.47. http://ieeexplore.ieee.org/document/6681438/

  21. Roychoudhury, S., Bellarykar, N., Kulkarni, V.: 2016 IEEE 20th International Enterprise Distributed Object Computing Conference (EDOC), pp. 1–10 (2016)

    Google Scholar 

  22. Silalahi, M., Hardiyati, R., Nadhiroh, I.M., Handayani, T., Amelia, M., Rahmaida, R.: 2018 International Conference on Information and Communications Technology (ICOIACT), pp. 515–519 (2018)

    Google Scholar 

  23. Chandra, N., Khatri, S.K., Som, S.: 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 348–354 (2017)

    Google Scholar 

  24. Mishu, S.Z., Rafiuddin, S.M.: 2016 19th International Conference on Computer and Information Technology (ICCIT), pp. 409–413 (2016)

    Google Scholar 

  25. Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Urias Cruz da Cunha , Ricardo Silva Carvalho or Alexandre Zaghetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

da Cunha, U.C., Carvalho, R.S., Zaghetto, A. (2020). A Text Classification Model to Identify Performance Bonds Requirement in Public Bidding Notices. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication. FICC 2020. Advances in Intelligent Systems and Computing, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-030-39442-4_50

Download citation