Skip to main content

Wilms’ Tumor in Childhood: Can Pattern Recognition Help for Classification?

  • 842 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1065)

Abstract

Wilms’ tumor or nephroblastoma is a kidney tumor and the most common renal malignancy in childhood. Clinicians assume that these tumors develop from embryonic renal precursor cells - sometimes via nephrogenic rests or nephroblastomatosis. In Europe, chemotherapy is carried out prior to surgery, which downstages the tumor. This results in various pathological subtypes with differences in their prognosis and treatment.

First, we demonstrate that the classical distinction between nephroblastoma and its precursor lesion is error prone with an accuracy of 0.824. We tackle this issue with appropriate texture features and improve the classification accuracy to 0.932.

Second, we are the first to predict the development of nephroblastoma under chemotherapy. We use a bag of visual model and show that visual clues are present that help to approximate the developing subtype.

Last but not least, we provide our data set of 54 kidneys with nephroblastomatosis in conjunction with 148 Wilms’ tumors.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The data set can be accessed at www.mia.uni-saarland.de/nephroblastomatosis.

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    CrossRef  Google Scholar 

  2. Beckwith, J.B., Kiviat, N.B., Bonadio, J.F.: Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr. Pathol. 10(1–2), 1–36 (1990)

    CrossRef  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  Google Scholar 

  4. Cox, S.G., Kilborn, T., Pillay, K., Davidson, A., Millar, A.J.: Magnetic resonance imaging versus histopathology in Wilms tumor and nephroblastomatosis: 3 examples of noncorrelation. J. Pediatr. Hematol. Oncol. 36(2), e81–e84 (2014)

    CrossRef  Google Scholar 

  5. Davidoff, A.M.: Wilms’ tumor. Curr. Opin. Pediatr. 21(3), 357–364 (2009)

    CrossRef  Google Scholar 

  6. Graf, N., Tournade, M.F., de Kraker, J.: The role of preoperative chemotherapy in the management of Wilms’ tumor: the SIOP studies. Urol. Clin. North Am. 27(3), 443–454 (2000)

    CrossRef  Google Scholar 

  7. Gylys-Morin, V., Hoffer, F., Kozakewich, H., Shamberger, R.: Wilms’ tumor and nephroblastomatosis: imaging characteristics at gadolinium-enhanced MR imaging. Radiology 188(2), 517–521 (1993)

    CrossRef  Google Scholar 

  8. Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    CrossRef  Google Scholar 

  9. Hötker, A.M., et al.: Diffusion-weighted MRI in the assessment of nephroblastoma: results of a multi-center trial (2018, Submitted)

    Google Scholar 

  10. Kaste, S.C., et al.: Wilms’ tumour: prognostic factors, staging, therapy and late effects. Pediatr. Radiol. 38(1), 2–17 (2008)

    CrossRef  Google Scholar 

  11. Kim, S., Chung, D.H.: Pediatric solid malignancies: neuroblastoma and Wilms’ tumor. Surg. Clin. North Am. 86(2), 469–487 (2006)

    CrossRef  MathSciNet  Google Scholar 

  12. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    CrossRef  MathSciNet  Google Scholar 

  13. Lonergan, G.J., Martinez-Leon, M.I., Agrons, G.A., Montemarano, H., Suarez, E.S.: Nephrogenic rests, nephroblastomatosis, and associated lesions of the kidney. Radiographics 18(4), 947–968 (1998)

    CrossRef  Google Scholar 

  14. Müller, S., Ochs, P., Weickert, J., Graf, N.: Robust interactive multi-label segmentation with an advanced edge detector. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 117–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_10

    CrossRef  Google Scholar 

  15. Owens, C.M., Brisse, H.J., Olsen, Ø.E., Begent, J., Smets, A.M.: Bilateral disease and new trends in Wilms tumour. Pediatr. Radiol. 38(1), 30–39 (2008)

    CrossRef  Google Scholar 

  16. Pastore, G., Znaor, A., Spreafico, F., Graf, N., Pritchard-Jones, K., Steliarova-Foucher, E.: Malignant renal tumours incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42(13), 2103–2114 (2006)

    CrossRef  Google Scholar 

  17. Reinhard, H., et al.: Outcome of relapses of nephroblastoma in patients registered in the SIOP/GPOH trials and studies. Oncol. Rep. 20(2), 463–467 (2008)

    Google Scholar 

  18. Rohrschneider, W.K., Weirich, A., Rieden, K., Darge, K., Tröger, J., Graf, N.: US, CT and MR imaging characteristics of nephroblastomatosis. Pediatr. Radiol. 28(6), 435–443 (1998)

    CrossRef  Google Scholar 

  19. Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37, 780–795 (1999). CSE Journal Articles p. 47

    CrossRef  Google Scholar 

  20. Soomro, M.H., et al.: Haralick’s texture analysis applied to colorectal T2-weighted MRI: a preliminary study of significance for cancer evolution. In: Proceedings of 13th International Conference on Biomedical Engineering, pp. 16–19. IEEE (2017)

    Google Scholar 

  21. Vujanić, G.M., Sandstedt, B.: The pathology of Wilms’ tumour (nephroblastoma): the International Society of Paediatric Oncology approach. J. Clin. Pathol. 63(2), 102–109 (2010)

    CrossRef  Google Scholar 

  22. Vujanić, G.M., et al.: Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood. Med. Pediatr. Oncol. 38(2), 79–82 (2002)

    CrossRef  Google Scholar 

  23. Wibmer, A., et al.: Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different gleason scores. Eur. Radiol. 25(10), 2840–2850 (2015)

    CrossRef  Google Scholar 

  24. Zayed, N., Elnemr, H.A.: Statistical analysis of Haralick texture features to discriminate lung abnormalities. J. Biomed. Imaging 2015, 12 (2015)

    Google Scholar 

Download references

Acknowledgements

J. Weickert has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741215, ERC Advanced Grant INCOVID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Müller, S., Weickert, J., Graf, N. (2020). Wilms’ Tumor in Childhood: Can Pattern Recognition Help for Classification?. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)