Advertisement

Convolutional Attention on Images for Locating Macular Edema

  • Maximilian BryanEmail author
  • Gerhard Heyer
  • Nathanael Philipp
  • Matus Rehak
  • Peter Wiedemann
Conference paper
  • 159 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1065)

Abstract

Neural networks have become a standard for classifying images. However, by their very nature, their internal data representation remains opaque. To solve this dilemma, attention mechanisms have recently been introduced. They help to highlight regions in input data that have been used for a network’s classification decision. This article presents two attention architectures for the classification of medical images. Firstly, we are explaining a simple architecture which creates one attention map that is used for all classes. Secondly, we introduce an architecture that creates an attention map for each class. This is done by creating two U-nets - one for attention and one for classification - and then multiplying these two maps together. We show that our architectures well meet the baseline of standard convolutional classifications while at the same time increasing their explainability.

Keywords

Neural networks Convolutional neural networks Attention 

References

  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2014). http://arxiv.org/abs/1409.0473
  2. 2.
    Chan, W., Jaitly, N., Le, Q.V., Vinyals, O.: Listen, attend and spell. CoRR abs/1508.01211 (2015). http://arxiv.org/abs/1508.01211
  3. 3.
    Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. CoRR abs/1506.07503 (2015). http://arxiv.org/abs/1506.07503
  4. 4.
    Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. CoRR abs/1202.2745 (2012). http://arxiv.org/abs/1202.2745
  5. 5.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp. 1026–1034 (2015)Google Scholar
  7. 7.
    Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167
  8. 8.
    Jin, Q., Meng, Z., Sun, C., Wei, L., Su, R.: Ra-unet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. CoRR abs/1811.01328 (2018). http://arxiv.org/abs/1811.01328
  9. 9.
    Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. CoRR abs/1702.00887 (2017). http://arxiv.org/abs/1702.00887
  10. 10.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)Google Scholar
  11. 11.
    Lian, S., Luo, Z., Zhong, Z., Lin, X., Su, S., Li, S.: Attention guided U-net for accurate iris segmentation. J. Vis. Commun. Image Represent. 56, 296–304 (2018).  https://doi.org/10.1016/j.jvcir.2018.10.001. http://www.sciencedirect.com/science/article/pii/S1047320318302372CrossRefGoogle Scholar
  12. 12.
    Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. CoRR abs/1508.04025 (2015). http://arxiv.org/abs/1508.04025
  13. 13.
    Oktay, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas. arXiv e-prints arXiv:1804.03999 (Apr 2018)
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597
  15. 15.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556
  16. 16.
    Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://arxiv.org/abs/1706.03762
  17. 17.
    Wang, F., et al.: Residual attention network for image classification. CoRR abs/1704.06904 (2017). http://arxiv.org/abs/1704.06904
  18. 18.
    Wang, L., Yin, B., Guo, A., Ma, H., Cao, J.: Skip-connection convolutional neural network for still image crowd counting. Appl. Intell. 48(10), 3360–3371 (2018).  https://doi.org/10.1007/s10489-018-1150-1CrossRefGoogle Scholar
  19. 19.
    Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. CoRR abs/1502.03044 (2015). http://arxiv.org/abs/1502.03044
  20. 20.
    Yamashita, T., Yamashita, J., Furukawa, H., Yamauchi, Y.: Multiple skip connections and dilated convolutions for semantic segmentation (2017)Google Scholar
  21. 21.
    Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. ArXiv e-prints (Nov 2013). https://arxiv.org/abs/1311.2901v3

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maximilian Bryan
    • 1
    Email author
  • Gerhard Heyer
    • 1
  • Nathanael Philipp
    • 1
  • Matus Rehak
    • 2
  • Peter Wiedemann
    • 2
  1. 1.Universität LeipzigLeipzigGermany
  2. 2.Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum LeipzigLeipzigGermany

Personalised recommendations