Skip to main content

Maternal Immune Activation and Neuropsychiatric Disorders: The Intricate Puzzle of Autism Spectrum Disorder

  • Chapter
  • First Online:
Perinatal Inflammation and Adult Psychopathology

Abstract

Pregnancy is a complex phenomenon in which several physiological changes are orchestrated to provide appropriate fetal development. In this context, the immune system plays important roles, oscillating between many states in the spectrum of tolerance and inflammation in order to balance the maternal–fetal interface. Infections caused by different agents are capable to trigger countless alterations in immune profile, which are especially harmful during the gestational period, being already linked to important development impairments. Regarding this, numerous evidence have pointed out the relation between maternal immune activation (MIA) and neurodevelopmental disorders like schizophrenia and autism spectrum disorder (ASD). Specifically, ASD is a highly prevalent disorder that stands out as a field of study because of its extensive complexity and relatively poorly known etiological mechanisms. Several animal models of MIA already helped to understand possible pathways by which immune activation could increase ASD risk, clarifying important roles of immune-related factors in the modulation of fetal development. Therefore, the main objective of this chapter is to compile and comment evidence that may improve the knowledge between immune system and ASD in the context of MIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

antigen-presenting cell

ASD:

autistic spectrum disorder

BD:

bipolar disorder

CC:

cingulate cortex

CMV:

cytomegalovirus

CNS:

Central nervous system

CRS:

congenital rubella syndrome

CTB:

cytotrophoblast

CXCL1:

(C-X-C motif) ligand 1 or keratinocyte chemoattractant (KC)

DNA:

deoxyribonucleic acid

DSM-5:

5th edition of Diagnostic and Statistical Manual of Mental Disorders

dsRNA:

double-stranded RNA

EEG:

electroencephalograms

EVT:

extravillous trophoblasts

GABA:

gamma-aminobutyric acid

GAD:

glutamic acid decarboxylase

G-CSF:

granulocyte colony-stimulating factor

GFAP:

glial fibrillary acidic protein

GM-CSF:

granulocyte-macrophage colony-stimulating factor

hCG:

human chorionic gonadotropin

HDAC:

histone deacetylase

Hip:

hippocampus

HSV:

herpes virus

ICAM:

intercellular adhesion molecule 1 or cluster differentiation (CD54)

IFN:

interferon

IL:

interleukin

iNOS:

inducible NOS (nitric oxide synthase)

IVS:

intervillous space

JNK:

c-Jun N-terminal kinases

LPS:

lipopolysaccharide

M1:

motor cortex

MBP:

myelin-basic protein

MCMV:

murine cytomegalovirus

MCP-1:

monocyte chemoattractant protein 1

MD:

major depression

MGE:

medial ganglionic eminence

MHFD:

mice born from dams fed a high-fat diet

MIA:

maternal immune activation

MIP-1α:

inflammatory protein 1 alpha

mPFC:

medial prefrontal cortex

MRD:

mice born from dams fed a regular diet

mRNA:

messenger ribonucleic acid

NK cell:

natural killer cell

PBMC:

peripheral blood mononuclear cell

PFC:

prefrontal cortex

PND:

postnatal day

PNS:

prenatal stress

poly(I:C):

polyinosinic:polycytidylic acid

PV:

parvalbumin-positive neurons

RANTES:

regulated on activation, normal T cell expressed and secreted

RLN:

reelin-positive neurons

SST:

somatostatin-positive neurons

SYN:

syncytiotrophoblast

SZ:

schizophrenia

TGF-β:

transforming growth factor–β

TLR:

toll-like receptor

TNF:

tumor necrosis factor

TNFRI:

tumor necrosis factor receptor I

TRP:

transient receptor potential

V1:

primary visual cortex

VCAM-1:

vascular cell adhesion protein 1

VEGF:

vascular endothelial growth factor

VPA:

valproic acid

References

  1. Aavani T, Rana SA, Hawkes R, Pittman QJ. Maternal immune activation produces cerebellar hyperplasia and alterations in motor and social behaviors in male and female mice. Cerebellum. 2015;14(5):491–505. https://doi.org/10.1007/s12311-015-0669-5.

    Article  CAS  PubMed  Google Scholar 

  2. Abdallah MW, Larsen N, Grove J, Rgaard-Ppedersen BNØ, Thorsen P, Mortensen EL, Hougaard DM. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J Biol Psychiatry 2013; May: 528–38. https://doi.org/10.3109/15622975.2011.63.

  3. Abdallah MW, Larsen N, Mortensen EL, Atladóttir HÓ, Nørgaard-Pedersen B, Bonefeld-Jørgensen EC, Grove J, Hougaard DM. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish Newborn screening biobank. J Neuroimmunol. 2012;252(1–2):75–82. https://doi.org/10.1016/j.jneuroim.2012.07.013.

    Article  CAS  PubMed  Google Scholar 

  4. Akatsu S, Ishikawa C, Takemura K, Ohtani A, Shiga T. Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice. Neurosci Res. 2015;101:15–23. https://doi.org/10.1016/j.neures.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  5. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. https://doi.org/10.1038/nri1391.

    Article  CAS  PubMed  Google Scholar 

  6. AL-Ayadhi LY, Mostafa GA. Elevated serum levels of interleukin-17A in children with autism. J Neuroinflammation. 2012;9(1):595. https://doi.org/10.1186/1742-2094-9-158.

    Article  CAS  Google Scholar 

  7. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Science Immunology. 2019;4(31):eaat6114. https://doi.org/10.1126/sciimmunol.aat6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. APA – American Psychiatric Association. DSM-5 diagnostic classification. In: Diagnostic and statistical manual of mental disorders. American Psychiatric Association; 2013. https://doi.org/10.1176/appi.books.9780890425596.x00DiagnosticClassification.

  9. Aristizábal B, González Á. Chapter 2: Innate immune system. In: El Rosario University Press, editors. Autoimmunity: from Bench to Bedside. Bogotá (Colombia); 2013. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK459455/.

  10. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry. 2006;11(1):47–55. https://doi.org/10.1038/sj.mp.4001748.

    Article  CAS  PubMed  Google Scholar 

  11. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5. https://doi.org/10.1016/j.bbi.2010.08.003.

    Article  CAS  PubMed  Google Scholar 

  12. Ashwood P, Wills S, Van de Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol. 2006;80(1):1–15. https://doi.org/10.1189/jlb.1205707.

    Article  CAS  PubMed  Google Scholar 

  13. Atladottir HO, Henriksen TB, Schendel DE, Parner ET. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics. 2012;130(6):e1447–54. https://doi.org/10.1542/peds.2012-1107.

    Article  PubMed  Google Scholar 

  14. Atladóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET. Maternal infection requiring hospitalization during pregnancy and autism Spectrum disorders. J Autism Dev Disord. 2010;40(12):1423–30. https://doi.org/10.1007/s10803-010-1006-y.

    Article  PubMed  Google Scholar 

  15. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W, Robinson C, Rosenberg T, White T, Durkin MS, Imm P, Nikolaou L, Yeargin-Allsopp M, Lee L-C, Harrington R, Lopez M, Fitzgerald RT, Hewitt A, Pettygrove S, Constantino JN, Vehorn A, Shenouda J, Hall-Lande J, Van Naarden Braun K, Dowling NF. Prevalence of autism Spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ballendine SA, Greba Q, Dawicki W, Zhang X, Gordon JR, Howland JG. Behavioral alterations in rat offspring following maternal immune activation and ELR-CXC chemokine receptor antagonism during pregnancy: implications for neurodevelopmental psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:155–65. https://doi.org/10.1016/j.pnpbp.2014.11.002.

    Article  CAS  Google Scholar 

  17. Bambini-Junior V, Rodrigues L, Behr GA, Moreira JCF, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res. 2011; https://doi.org/10.1016/j.brainres.2011.06.015.

  18. Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015;75(1):25–37. https://doi.org/10.1016/j.cyto.2015.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baranek GT, David FJ, Poe MD, Stone WL, Watson LR. Sensory experiences questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry. 2006;47(6):591–601. https://doi.org/10.1111/j.1469-7610.2005.01546.x.

    Article  PubMed  Google Scholar 

  20. Baranek GT, Watson LR, Boyd BA, Poe MD, David FJ, McGuire L. Hyporesponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev Psychopathol. 2013;25(2):307–20. https://doi.org/10.1017/S0954579412001071.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baronio D, Castro K, Gonchoroski T, de Melo GM, Nunes GDF, Bambini-Junior V, Gottfried C, Riesgo R. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to Valproic acid. PLoS One. 2015;10(1):e0116363. https://doi.org/10.1371/journal.pone.0116363.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Basil P, Li Q, Gui H, Hui TCK, Ling VHM, Wong CCY, Mill J, McAlonan GM, Sham P-C. Prenatal immune activation alters the adult neural epigenome but can be partly stabilised by a n-3 polyunsaturated fatty acid diet. Transl Psychiatry. 2018;8(1):125. https://doi.org/10.1038/s41398-018-0167-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bastard J-P, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance Eur Cytokine Netw. 2006;17(1):4–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16613757.

  24. Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol. 2019;175:1–19. https://doi.org/10.1016/J.PNEUROBIO.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  25. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, Steiner J, Connor TJ, Harkin A, Versnel MA, Drexhage HA. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol. 2012;92(5):959–75. https://doi.org/10.1189/jlb.0212100.

    Article  CAS  PubMed  Google Scholar 

  26. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol. 1993;64(5 Suppl):456–60. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8315568

    CAS  PubMed  Google Scholar 

  27. Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 2010;24(6):881–97. https://doi.org/10.1016/j.bbi.2010.03.005.

    Article  PubMed  Google Scholar 

  28. Boksa P, Zhang Y, Nouel D, Wong A, Wong TP. Early development of Parvalbumin-, somatostatin-, and cholecystokinin-expressing neurons in rat brain following prenatal immune activation and maternal Iron deficiency. Dev Neurosci. 2016;38(5):342–53. https://doi.org/10.1159/000454677.

    Article  CAS  PubMed  Google Scholar 

  29. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2):S33–40. https://doi.org/10.1016/j.jaci.2009.09.017.

    Article  PubMed  Google Scholar 

  30. Borrell J, Vela JM, Arévalo-Martin A, Molina-Holgado E, Guaza C. Prenatal immune challenge disrupts sensorimotor gating in adult rats implications for the Etiopathogenesis of schizophrenia. Neuropsychopharmacology. 2002;26(2):204–15. https://doi.org/10.1016/S0893-133X(01)00360-8.

    Article  CAS  PubMed  Google Scholar 

  31. Bränn E, Edvinsson Å, Rostedt Punga A, Sundström-Poromaa I, Skalkidou A. Inflammatory and anti-inflammatory markers in plasma: from late pregnancy to early postpartum. Sci Rep. 2019;9(1):1863. https://doi.org/10.1038/s41598-018-38304-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatr. 2010;167(3):261–80. https://doi.org/10.1176/appi.ajp.2009.09030361.

    Article  PubMed  Google Scholar 

  33. Brown AS, Meyer U. Maternal immune activation and neuropsychiatric illness: a translational research perspective. Am J Psychiatr. 2018;175(11):1073–83. https://doi.org/10.1176/appi.ajp.2018.17121311.

    Article  PubMed  Google Scholar 

  34. Brucato M, Ladd-Acosta C, Li M, Caruso D, Hong X, Kaczaniuk J, Stuart EA, Fallin MD, Wang X. Prenatal exposure to fever is associated with autism spectrum disorder in the Boston birth cohort. Autism Res. 2017;10(11):1878–90. https://doi.org/10.1002/aur.1841.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Buescher AVS, Cidav Z, Knapp M, Mandell DS. Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr. 2014;168(8):721. https://doi.org/10.1001/jamapediatrics.2014.210.

    Article  PubMed  Google Scholar 

  36. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165(7):1762–75. https://doi.org/10.1016/j.cell.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bulla R, Fischetti F, Bossi F, Tedesco F. Feto-maternal immune interaction at the placental level. Lupus. 2004;13(9):625–9. https://doi.org/10.1191/0961203304lu2010oa.

    Article  CAS  PubMed  Google Scholar 

  38. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 2000;47(1):64–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10625084

    Article  CAS  PubMed  Google Scholar 

  39. Canetta S, Bolkan S, Padilla-Coreano N, Song LJ, Sahn R, Harrison NL, Gordon JA, Brown A, Kellendonk C. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21(7):956–68. https://doi.org/10.1038/mp.2015.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Careaga M, Murai T, Bauman MD. Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry. 2017;81(5):391–401. https://doi.org/10.1016/J.BIOPSYCH.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  41. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD. Differential activation of astrocytes by innate and adaptive immune stimuli. Glia. 2005;49(3):360–74. https://doi.org/10.1002/glia.20117.

    Article  PubMed  Google Scholar 

  42. Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. a role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int. 2019;126:36–58. https://doi.org/10.1016/j.neuint.2019.03.007.

    Article  CAS  PubMed  Google Scholar 

  43. Cawdell-Smith J, Upfold J, Edwards M, Smith M. Neural tube and other developmental anomalies in the Guinea pig following maternal hyperthermia during early neural tube development. Teratog Carcinog Mutagen. 1992;12(1):1–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1354895

    Article  CAS  PubMed  Google Scholar 

  44. Cervantes-Gonzalez M, Launay O. Pandemic influenza a (H1N1) in pregnant women: impact of early diagnosis and antiviral treatment. Expert Rev Anti-Infect Ther. 2010;8(9):981–4. https://doi.org/10.1586/eri.10.83.

    Article  PubMed  Google Scholar 

  45. Chess S. Autism in children with congenital rubella. J Autism Child Schizophr. 1971;1(1):33–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5172438

    Article  CAS  PubMed  Google Scholar 

  46. Chess S. Follow-up report on autism in congenital rubella. J Autism Child Schizophr. 1977;7(1):69–81. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/576606

    Article  CAS  PubMed  Google Scholar 

  47. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, Littman DR, Huh JR. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933–9. https://doi.org/10.1126/science.aad0314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Christian LM, Porter K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: effects of maternal body mass index. Cytokine. 2014;70(2):134–40. https://doi.org/10.1016/j.cyto.2014.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cunningham C, Campion S, Teeling J, Felton L, Perry VH. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun. 2007;21(4):490–502. https://doi.org/10.1016/J.BBI.2006.12.007.

    Article  CAS  PubMed  Google Scholar 

  50. Das UN. Obesity, metabolic syndrome X, and inflammation. Nutrition. 2002;18(5):430–2. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11985951

    Article  CAS  PubMed  Google Scholar 

  51. Dawson G, Webb SJ, McPartland J. Understanding the nature of face processing impairment in autism: insights from Behavioral and electrophysiological studies. Dev Neuropsychol. 2005;27(3):403–24. https://doi.org/10.1207/s15326942dn2703_6.

    Article  PubMed  Google Scholar 

  52. de Souza DF, Wartchow KM, Lunardi PS, Brolese G, Tortorelli LS, Batassini C, Biasibetti R, Gonçalves C-A. Changes in Astroglial markers in a maternal immune activation model of schizophrenia in Wistar rats are dependent on sex. Front Cell Neurosci. 2015;9(489). https://doi.org/10.3389/fncel.2015.00489

  53. Deckmann I, Schwingel GB, Fontes-Dutra M, Bambini-Junior V, Gottfried C. Neuroimmune alterations in autism: a translational analysis focusing on the animal model of autism induced by prenatal exposure to Valproic acid. Neuroimmunomodulation. 2018a:1–15. https://doi.org/10.1159/000492113.

  54. Deckmann I, Schwingel GB, Fontes-Dutra M, Bambini-Junior V, Gottfried C. Neuroimmune alterations in autism: a translational analysis focusing on the animal model of autism induced by prenatal exposure to Valproic acid. Neuroimmunomodulation. 2018b;25(5–6):285–99. https://doi.org/10.1159/000492113.

    Article  CAS  PubMed  Google Scholar 

  55. Dendrinos G, Hemelt M, Keller A. Prenatal VPA exposure and changes in sensory processing by the superior colliculus. Front Integr Neurosci. 2011;5:68. https://doi.org/10.3389/fnint.2011.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Desmond M, Wilson G, Verniaud W, Melnick J, WE R. The early growth and development of infants with congenital rubella. Advances in Teratology. 1970;4:39–62.

    Google Scholar 

  57. Deykin EY, Macmahon B. Viral exposure and autism. Am J Epidemiol. 1979;109(6):628–38. https://doi.org/10.1093/oxfordjournals.aje.a112726.

    Article  CAS  PubMed  Google Scholar 

  58. Díaz P, Powell TL, Jansson T. The role of placental nutrient sensing in maternal-fetal resource allocation. Biol Reprod. 2014;91(4):82. https://doi.org/10.1095/biolreprod.114.121798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dickerson DD, Bilkey DK. Aberrant neural synchrony in the maternal immune activation model: using translatable measures to explore targeted interventions. Front Behav Neurosci. 2013;7:217. https://doi.org/10.3389/fnbeh.2013.00217.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dickerson DD, Wolff AR, Bilkey DK. Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia. J Neurosci. 2010;30(37):12424–31. https://doi.org/10.1523/JNEUROSCI.3046-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dinarello CA. Immunological and inflammatory functions of the Interleukin-1 family. Annu Rev Immunol. 2009;27(1):519–50. https://doi.org/10.1146/annurev.immunol.021908.132612.

    Article  CAS  PubMed  Google Scholar 

  62. Duchatel RJ, Jobling P, Graham BA, Harms LR, Michie PT, Hodgson DM, Tooney PA. Increased white matter neuron density in a rat model of maternal immune activation – implications for schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;65:118–26. https://doi.org/10.1016/J.PNPBP.2015.09.006.

    Article  Google Scholar 

  63. Edwards MJ. Hyperthermia in utero due to maternal influenza is an environmental risk factor for schizophrenia. Congenit Anom. 2007;47(3):84–9. https://doi.org/10.1111/j.1741-4520.2007.00151.x.

    Article  Google Scholar 

  64. Estes A, Zwaigenbaum L, Gu H, St. John T, Paterson S, Elison JT, Hazlett H, Botteron K, Dager SR, Schultz RT, Kostopoulos P, Evans A, Dawson G, Eliason J, Alvarez S, Piven J, IBIS Network. Behavioral, cognitive, and adaptive development in infants with autism spectrum disorder in the first 2 years of life. J Neurodev Disord. 2015;7(1):24. https://doi.org/10.1186/s11689-015-9117-6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Estes ML, Elmer BM, Carter CC, McAllister AK. Maternal immune activation causes age-specific changes in cytokine receptor expression in offspring throughout development. BioRxiv. 2018;490466 https://doi.org/10.1101/490466.

  66. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469–86. https://doi.org/10.1186/1471-2350-6-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353(6301):772–7.. https://doi.org/10.1126/science.aag3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fang S-Y, Wang S, Huang N, Yeh H-H, Chen C-Y. Prenatal infection and autism spectrum disorders in childhood: a population-based case-control study in Taiwan. Paediatr Perinat Epidemiol. 2015;29(4):307–16. https://doi.org/10.1111/ppe.12194.

    Article  PubMed  Google Scholar 

  69. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138–45. https://doi.org/10.1016/j.it.2007.01.005.

    Article  CAS  PubMed  Google Scholar 

  70. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry. 1999;4(2):145–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10208446

    Article  CAS  PubMed  Google Scholar 

  71. Favre MR, Barkat TR, Lamendola D, Khazen G, Markram H, Markram K. General developmental health in the VPA-rat model of autism. Front Behav Neurosci. 2013;7:88. https://doi.org/10.3389/fnbeh.2013.00088.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18(2):206–14. https://doi.org/10.1038/mp.2012.110.

    Article  CAS  PubMed  Google Scholar 

  73. Fischer K, Przepiera-Będzak H, Sawicki M, Walecka A, Brzosko I, Brzosko M. Serum Interleukin-23 in polish patients with systemic lupus erythematosus: association with lupus nephritis, obesity, and peripheral vascular disease. Mediat Inflamm. 2017; https://doi.org/10.1155/2017/9401432.

  74. Fontes-Dutra M, Santos-Terra J, Deckmann I, Brum Schwingel G, Della-Flora Nunes G, Hirsch MM, Bauer-Negrini G, Riesgo RS, Bambini-Júnior V, Hedin-Pereira C, Gottfried C. Resveratrol prevents cellular and behavioral sensory alterations in the animal model of autism induced by Valproic acid. Front Synaptic Neurosci. 2018;10:9. https://doi.org/10.3389/fnsyn.2018.00009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gadia CA, Tuchman R, Rotta NT. Autismo e doenças invasivas de desenvolvimento. J Pediatr. 2004;80(2):83–94. https://doi.org/10.1590/S0021-75572004000300011.

    Article  Google Scholar 

  76. Garay PA, Hsiao EY, Patterson PH, McAllister AK. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun. 2013;31:54–68. https://doi.org/10.1016/j.bbi.2012.07.008.

    Article  CAS  PubMed  Google Scholar 

  77. Gasteiger G, D’Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun. 2017;9(2):111–25. https://doi.org/10.1159/000453397.

    Article  CAS  PubMed  Google Scholar 

  78. Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A. The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets. 2009;8(1):40–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19275692

    Article  CAS  PubMed  Google Scholar 

  79. Gentile I, Zappulo E, Riccio MP, Binda S, Bubba L, Pellegrinelli L, Scognamiglio D, Operto F, Margari L, Borgia G, Bravaccio C. Prevalence of congenital cytomegalovirus infection assessed through viral genome detection in dried blood spots in children with autism Spectrum disorders. In Vivo. 2017;31(3):467–73. https://doi.org/10.21873/invivo.11085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giovanoli S, Notter T, Richetto J, Labouesse MA, Vuillermot S, Riva MA, Meyer U. Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging. J Neuroinflammation. 2015;12(1):221. https://doi.org/10.1186/s12974-015-0437-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav Immun. 2016;55:25–38. https://doi.org/10.1016/j.bbi.2015.09.015.

    Article  CAS  PubMed  Google Scholar 

  82. Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether J, Hansen R, Kharrazi M, Ashwood P, Van de Water J. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Molecular Autism. 2011;2(1):13. https://doi.org/10.1186/2040-2392-2-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M. Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology. 2005;48(6):903–17. https://doi.org/10.1016/j.neuropharm.2004.12.023.

    Article  CAS  PubMed  Google Scholar 

  84. Gottfried C, Bambini-Junior V, Baronio D, Zanatta G, Silvestrin RB, Vaccaro T, Riesgo R. Valproic acid in autism spectrum disorder: from an environmental risk factor to a reliable animal model: InTech; 2013. https://doi.org/10.5772/54824.

  85. Gray SM, Bloch MH. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr Psychiatry Rep. 2012;14(3):220–8. https://doi.org/10.1007/s11920-012-0272-0.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Greenfeder S, Umland SP, Cuss FM, Chapman RW, Egan RW. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respir Res. 2001;2(2):71–9. https://doi.org/10.1186/RR41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gumusoglu SB, Fine RS, Murray SJ, Bittle JL, Stevens HE. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun. 2017;65:274–83. https://doi.org/10.1016/j.bbi.2017.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haarman BCMB, Riemersma-Van der Lek RF, de Groot JC, Ruhé HGE, Klein HC, Zandstra TE, Burger H, Schoevers RA, de Vries EFJ, Drexhage HA, Nolen WA, Doorduin J. Neuroinflammation in bipolar disorder – A [11C]-(R)-PK11195 positron emission tomography study. Brain Behav Immun. 2014;40:219–25. https://doi.org/10.1016/j.bbi.2014.03.016.

    Article  CAS  PubMed  Google Scholar 

  89. Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71(4):444–57. https://doi.org/10.1002/ana.22620.

    Article  PubMed  Google Scholar 

  90. Hao LY, Hao XQ, Li SH, Li XH. Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats. Neuroscience. 2010;166(3):763–70. https://doi.org/10.1016/j.neuroscience.2010.01.006.

    Article  CAS  PubMed  Google Scholar 

  91. Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol. 2012;72(10):1335–48. https://doi.org/10.1002/dneu.22043.

    Article  CAS  PubMed  Google Scholar 

  92. Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. Journal of Psychiatry & Neuroscience : JPN. 2014;39(6):376–85. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24936776

    Article  Google Scholar 

  93. Holloway T, Moreno JL, Umali A, Rayannavar V, Hodes GE, Russo SJ, Gonzalez-Maeso J. Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci. 2013;33(3):1088–98. https://doi.org/10.1523/JNEUROSCI.2331-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hornig M, Bresnahan MA, Che X, Schultz AF, Ukaigwe JE, Eddy ML, Hirtz D, Gunnes N, Lie KK, Magnus P, Mjaaland S, Reichborn-Kjennerud T, Schjølberg S, Øyen A-S, Levin B, Susser ES, Stoltenberg C, Lipkin WI. Prenatal fever and autism risk. Mol Psychiatry. 2018;23(3):759–66. https://doi.org/10.1038/mp.2017.119.

    Article  CAS  PubMed  Google Scholar 

  95. Hsiao EY, McBride SW, Chow J, Mazmanian SK, Patterson PH. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A. 2012;109(31):12776–81. https://doi.org/10.1073/pnas.1202556109.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Huerta M, Lord C. Diagnostic evaluation of autism Spectrum disorders. Pediatr Clin N Am. 2012:103–11. https://doi.org/10.1016/j.pcl.2011.10.018.

  97. Hutson MR, Keyte AL, Hernández-Morales M, Gibbs E, Kupchinsky ZA, Argyridis I, Erwin KN, Pegram K, Kneifel M, Rosenberg PB, Matak P, Xie L, Grandl J, Davis EE, Katsanis N, Liu C, Benner EJ. Temperature-activated ion channels in neural crest cells confer maternal fever–associated birth defects. Sci Signal. 2017;10(500):eaal4055. https://doi.org/10.1126/scisignal.aal4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hutton J. Does rubella cause autism: a 2015 reappraisal? Front Hum Neurosci. 2016;10:25. https://doi.org/10.3389/FNHUM.2016.00025.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Imai K, Kotani T, Tsuda H, Nakano T, Ushida T, Iwase A, Nagai T, Toyokuni S, Suzumura A, Kikkawa F. Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Sci Rep. 2018;8(1):9221. https://doi.org/10.1038/s41598-018-27626-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P. Microglia activation and schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull. 2016;43(3):sbw088. https://doi.org/10.1093/schbul/sbw088.

    Article  Google Scholar 

  101. John GR, Chen L, Rivieccio MA, Melendez-Vasquez CV, Hartley A, Brosnan CF. Interleukin-1 induces a reactive astroglial phenotype via deactivation of the rho GTPase-rock axis. J Neurosci. 2004;24(11):2837–45. https://doi.org/10.1523/JNEUROSCI.4789-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Juckel G, Manitz MP, Brüne M, Friebe A, Heneka MT, Wolf RJ. Microglial activation in a neuroinflammational animal model of schizophrenia – a pilot study. Schizophr Res. 2011;131(1–3):96–100. https://doi.org/10.1016/j.schres.2011.06.018.

    Article  PubMed  Google Scholar 

  103. Kelly E, Won A, Refaeli Y, Van Parijs L. IL-2 and related cytokines can promote T cell survival by activating AKT. J Immunol. 2002;168(2):597–603. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11777951

    Article  CAS  PubMed  Google Scholar 

  104. Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones. 2002;7(1):73–90. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11892990

    Article  PubMed  PubMed Central  Google Scholar 

  105. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry. 2008;65(2):146. https://doi.org/10.1001/archgenpsychiatry.2007.20.

    Article  PubMed  Google Scholar 

  106. Kieffer TEC, Laskewitz A, Scherjon SA, Faas MM, Prins JR. Memory T cells in pregnancy. Front Immunol. 2019;10:625. https://doi.org/10.3389/fimmu.2019.00625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Phys. 1994a;267(6 Pt 2):R1596–605. https://doi.org/10.1152/ajpregu.1994.267.6.R1596.

    Article  CAS  Google Scholar 

  108. Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Phys Regul Integr Comp Phys. 1994b;267(6):R1596–605. https://doi.org/10.1152/ajpregu.1994.267.6.R1596.

    Article  CAS  Google Scholar 

  109. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neurosci Biobehav Rev. 2008;32(8):1519–32. https://doi.org/10.1016/J.NEUBIOREV.2008.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kneeland RE, Fatemi SH. Viral infection, inflammation and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:35–48. https://doi.org/10.1016/J.PNPBP.2012.02.001.

    Article  CAS  Google Scholar 

  111. Koehler L, Fournel A, Albertowski K, Roessner V, Gerber J, Hummel C, Hummel T, Bensafi M. Impaired odor perception in autism Spectrum disorder is associated with decreased activity in olfactory cortex. Chem Senses. 2018;43(8):627–34. https://doi.org/10.1093/chemse/bjy051.

    Article  CAS  PubMed  Google Scholar 

  112. Kolozsi E, Mackenzie RN, Roullet FI, Decatanzaro D, Foster JA. Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice. Neuroscience. 2009;163(4):1201–10. https://doi.org/10.1016/j.neuroscience.2009.07.021.

    Article  CAS  PubMed  Google Scholar 

  113. Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med. 2014;370(23):2211–8. https://doi.org/10.1056/NEJMra1213566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Krakowiak P, Goines PE, Tancredi DJ, Ashwood P, Hansen RL, Hertz-Picciotto I, Van de Water J. Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry. 2017;81(5):442–51. https://doi.org/10.1016/j.biopsych.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  115. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8843599

    Article  CAS  PubMed  Google Scholar 

  116. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:1–11. https://doi.org/10.1155/2017/3908061.

    Article  CAS  Google Scholar 

  117. Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics. 2015;10(12):1143–55. https://doi.org/10.1080/15592294.2015.1114202.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee JY, Bowden DS. Rubella virus replication and links to teratogenicity. Clin Microbiol Rev. 2000;13(4):571–87. https://doi.org/10.1128/cmr.13.4.571-587.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2017; https://doi.org/10.1038/nri.2017.125.

  120. Li W-Y, Chang Y-C, Lee LJ-H, Lee L-J. Prenatal infection affects the neuronal architecture and cognitive function in adult mice. Dev Neurosci. 2014;36(5):359–70. https://doi.org/10.1159/000362383.

    Article  CAS  PubMed  Google Scholar 

  121. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1–2):111–6. https://doi.org/10.1016/j.jneuroim.2008.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liao Y, Zhang Y, Liu X, Lu Y, Zhang L, Xi T, Shu S, Fang F. Maternal murine cytomegalovirus infection during pregnancy up-regulates the gene expression of toll-like receptor 2 and 4 in placenta. Current Medical Science. 2018;38(4):632–9. https://doi.org/10.1007/s11596-018-1924-z.

    Article  CAS  PubMed  Google Scholar 

  123. Lins BR, Hurtubise JL, Roebuck AJ, Marks WN, Zabder NK, Scott GA, Greba Q, Dawicki W, Zhang X, Rudulier CD, Gordon JR, Howland JG. Prospective analysis of the effects of maternal immune activation on rat cytokines during pregnancy and behavior of the male offspring relevant to schizophrenia. ENeuro. 2018;5(4) https://doi.org/10.1523/ENEURO.0249-18.2018.

  124. Lins BR, Marks WN, Zabder NK, Greba Q, Howland JG. Maternal immune activation during pregnancy alters the behavior profile of female offspring of sprague dawley rats. ENeuro. 2019;6(2) https://doi.org/10.1523/ENEURO.0437-18.2019.

  125. Little LM, Freuler AC, Houser MB, Guckian L, Carbine K, David FJ, Baranek GT. Psychometric validation of the sensory experiences questionnaire. Am J Occup Ther. 2011;65(2):207–10. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21476368

    Article  PubMed  Google Scholar 

  126. Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 2011;89(5–6):141–6. https://doi.org/10.1016/j.lfs.2011.05.011.

    Article  CAS  PubMed  Google Scholar 

  127. Liverman CS, Kaftan HA, Cui L, Hersperger SG, Taboada E, Klein RM, Berman NEJ. Altered expression of pro-inflammatory and developmental genes in the fetal brain in a mouse model of maternal infection. Neurosci Lett. 2006;399(3):220–5. https://doi.org/10.1016/j.neulet.2006.01.064.

    Article  CAS  PubMed  Google Scholar 

  128. Lombardo MV, Moon HM, Su J, Palmer TD, Courchesne E, Pramparo T. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol Psychiatry. 2018;23(4):1001–13. https://doi.org/10.1038/mp.2017.15.

    Article  CAS  PubMed  Google Scholar 

  129. Lucchina L, Depino AM. Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res. 2013;7(2):273–89. https://doi.org/10.1002/aur.1338.

    Article  PubMed  Google Scholar 

  130. Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, Li N, Wei F. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res. 2015;4 https://doi.org/10.12688/f1000research.7010.1.

  131. Mahic M, Mjaaland S, Bøvelstad HM, Gunnes N, Susser E, Bresnahan M, Øyen A-S, Levin B, Che X, Hirtz D, Reichborn-Kjennerud T, Schjølberg S, Roth C, Magnus P, Stoltenberg C, Surén P, Hornig M, Lipkin WI. Maternal Immunoreactivity to herpes simplex virus 2 and risk of autism Spectrum disorder in male offspring. MSphere. 2017;2(1) https://doi.org/10.1128/mSphere.00016-17.

  132. Makinodan M, Tatsumi K, Manabe T, Yamauchi T, Makinodan E, Matsuyoshi H, Shimoda S, Noriyama Y, Kishimoto T, Wanaka A. Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. J Neurosci Res. 2008;86(10):2190–200. https://doi.org/10.1002/jnr.21673.

    Article  CAS  PubMed  Google Scholar 

  133. Malek TR. The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol. 2003;74(6):961–5. https://doi.org/10.1189/jlb.0603272.

    Article  CAS  PubMed  Google Scholar 

  134. Manzardo AM, Henkhaus R, Dhillon S, Butler MG. Plasma cytokine levels in children with autistic disorder and unrelated siblings. Int J Dev Neurosci. 2012;30(2):121–7. https://doi.org/10.1016/j.ijdevneu.2011.12.003.

    Article  CAS  PubMed  Google Scholar 

  135. Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology. 2008;33(4):901–12. https://doi.org/10.1038/sj.npp.1301453.

    Article  PubMed  Google Scholar 

  136. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol. 2018;14(S2):49. https://doi.org/10.1186/s13223-018-0278-1.

    Article  CAS  Google Scholar 

  137. Martínez-Varea A, Pellicer B, Perales-Marín A, Pellicer A. Relationship between maternal immunological response during pregnancy and onset of preeclampsia. J Immunol Res. 2014;2014:210241. https://doi.org/10.1155/2014/210241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Greenwood K, Russell A, Schmitz N, Happe F, Howlin P, Murphy DGM. Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain J Neurol. 2002;125(Pt 7):1594–606. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12077008

    Article  Google Scholar 

  139. McDermott KW, Anderson RC, Foley T, Radford J, O’Halloran S, O’Keeffe GW (2017) Changes in oligodendroglial and microglial cell populations in the embryonic rat spinal cord following maternal immune activation. FASEB J.

    Google Scholar 

  140. Meyer U. Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry. 2014;75(4):307–15. https://doi.org/10.1016/J.BIOPSYCH.2013.07.011.

    Article  CAS  PubMed  Google Scholar 

  141. Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90(3):285–326. https://doi.org/10.1016/J.PNEUROBIO.2009.10.018.

    Article  PubMed  Google Scholar 

  142. Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 2012;62(3):1308–21. https://doi.org/10.1016/j.neuropharm.2011.01.009.

    Article  CAS  PubMed  Google Scholar 

  143. Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev. 2009;33(7):1061–79. https://doi.org/10.1016/J.NEUBIOREV.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  144. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry. 2008a;13(2):208–21. https://doi.org/10.1038/sj.mp.4002042.

    Article  CAS  PubMed  Google Scholar 

  145. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci. 2006;26(18):4752–62. https://doi.org/10.1523/JNEUROSCI.0099-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun. 2008b;22(4):469–86. https://doi.org/10.1016/J.BBI.2007.09.012.

    Article  CAS  PubMed  Google Scholar 

  147. Min K-J, Yang M, Kim S-U, Jou I, Joe E. Astrocytes induce Hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci. 2006;26(6):1880–7. https://doi.org/10.1523/JNEUROSCI.3696-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Minakova E, Lang J, Medel-Matus J-S, Gould GG, Reynolds A, Shin D, Mazarati A, Sankar R. Melanotan-II reverses autistic features in a maternal immune activation mouse model of autism. PLoS One. 2019;14(1):e0210389. https://doi.org/10.1371/journal.pone.0210389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Minakova E, Warner BB. Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res. 2018;110(20):1539–50. https://doi.org/10.1002/bdr2.1416.

    Article  CAS  PubMed  Google Scholar 

  150. Mouihate A, Al-Hashash H, Rakhshani-Moghadam S, Kalakh S. Impact of prenatal immune challenge on the demyelination injury during adulthood. CNS Neurosci Ther. 2017;23(9):724–35. https://doi.org/10.1111/cns.12718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Muneer A. Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investig. 2016;13(1):18–33. https://doi.org/10.4306/pi.2016.13.1.18.

    Article  CAS  PubMed  Google Scholar 

  152. Nahmias AJ, Nahmias SB, Danielsson D. The possible role of transplacentally-acquired antibodies to infectious agents, with molecular mimicry to nervous system sialic acid epitopes, as causes of Neuromental disorders: prevention and vaccine implications. Clin Dev Immunol. 2006;13(2–4):167–83. https://doi.org/10.1080/17402520600801745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci. 2016;10 https://doi.org/10.3389/fnins.2016.00329.

  154. Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP, Schuchbauer MA, Rogac M, Tang Q, Dugan LL, Powell SB. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One. 2013;8(3):e57380. https://doi.org/10.1371/journal.pone.0057380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8. https://doi.org/10.1126/science.1110647.

    Article  CAS  PubMed  Google Scholar 

  156. Norden DM, Fenn AM, Dugan A, Godbout JP. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia. 2014;62(6):881–95. https://doi.org/10.1002/glia.22647.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Onore CE, Schwartzer JJ, Careaga M, Bennan RF, Ashwood P. Maternal immune activation leads to activated inflammatory macrophages in offspring. Brain Behav Immun. 2014;38:220. https://doi.org/10.1016/J.BBI.2014.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Openshaw RL, Kwon J, McColl A, Penninger JM, Cavanagh J, Pratt JA, Morris BJ. JNK signalling mediates aspects of maternal immune activation: importance of maternal genotype in relation to schizophrenia risk. J Neuroinflammation. 2019;16(1):18. https://doi.org/10.1186/s12974-019-1408-5.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ornoy A, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol. 2015; https://doi.org/10.1016/j.reprotox.2015.05.007.

  160. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun. 2012;26(4):623–34. https://doi.org/10.1016/j.bbi.2012.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry. 2006;59(6):546–54. https://doi.org/10.1016/J.BIOPSYCH.2005.07.031.

    Article  CAS  PubMed  Google Scholar 

  162. Parker-Athill EC, Tan J. Maternal immune activation and autism spectrum disorder: interleukin-6 signaling as a key mechanistic pathway. Neurosignals. 2010;18(2):113–28. https://doi.org/10.1159/000319828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Patterson P. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 2009.

    Google Scholar 

  164. Pendyala G, Chou S, Jung Y, Coiro P, Spartz E, Padmashri R, Li M, Dunaevsky A. Maternal immune activation causes behavioral impairments and altered cerebellar cytokine and synaptic protein expression. Neuropsychopharmacology. 2017;42(7):1435–46. https://doi.org/10.1038/npp.2017.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. https://doi.org/10.1186/s40168-017-0268-4.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Piontkewitz Y, Arad M, Weiner I. Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry. 2011;70(9):842–51. https://doi.org/10.1016/J.BIOPSYCH.2011.06.007.

    Article  PubMed  Google Scholar 

  167. Ranger P, Ellenbroek BA. Perinatal influences of valproate on brain and behaviour: an animal model for autism. In: Current topics in behavioral neurosciences, vol. 29; 2015. p. 363–86. https://doi.org/10.1007/7854_2015_404.

    Chapter  Google Scholar 

  168. Rapin I, Tuchman RF. Autism: definition, neurobiology, screening, diagnosis. Pediatr Clin N Am. 2008;55(5):1129–46. https://doi.org/10.1016/j.pcl.2008.07.005.

    Article  Google Scholar 

  169. Ricci S, Businaro R, Ippoliti F, Lo Vasco VR, Massoni F, Onofri E, Troili GM, Pontecorvi V, Morelli M, Rapp Ricciardi M, Archer T. Altered cytokine and BDNF levels in autism spectrum disorder. Neurotox Res. 2013;24(4):491–501. https://doi.org/10.1007/s12640-013-9393-4.

    Article  CAS  PubMed  Google Scholar 

  170. Richetto J, Massart R, Weber-Stadlbauer U, Szyf M, Riva MA, Meyer U. Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders. Biol Psychiatry. 2017;81(3):265–76. https://doi.org/10.1016/j.biopsych.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  171. Rinaldi T, Perrodin C, Markram H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Frontiers in Neural Circuits. 2008;2:4. https://doi.org/10.3389/neuro.04.004.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav. 2012;62(3):263–71. https://doi.org/10.1016/j.yhbeh.2012.02.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rodier PM, Bryson SE, Welch JP. Minor malformations and physical measurements in autism: data from Nova Scotia. Teratology. 1997; https://doi.org/10.1002/(SICI)1096-9926(199705)55:5<319::AID-TERA4>3.0.CO;2-U.

  174. Ronovsky M, Berger S, Zambon A, Reisinger SN, Horvath O, Pollak A, Lindtner C, Berger A, Pollak DD. Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior. Brain Behav Immun. 2017;63:127–36. https://doi.org/10.1016/j.bbi.2016.10.016.

    Article  CAS  PubMed  Google Scholar 

  175. Rose DR, Careaga M, Van de Water J, McAllister K, Bauman MD, Ashwood P. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun. 2017;63:60–70. https://doi.org/10.1016/j.bbi.2016.11.020.

    Article  CAS  PubMed  Google Scholar 

  176. Roullet FI, Lai JKY, Foster JA. In utero exposure to valproic acid and autism – a current review of clinical and animal studies. Neurotoxicol Teratol. 2013;36:47–56. https://doi.org/10.1016/j.ntt.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  177. Roullet FI, Wollaston L, Decatanzaro D, Foster JA. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience. 2010;170(2):514–22. https://doi.org/10.1016/j.neuroscience.2010.06.069.

    Article  CAS  PubMed  Google Scholar 

  178. Said N, Lakehayli S, Battas O, Hakkou F, Tazi A. Effects of prenatal stress on anxiety-like behavior and nociceptive response in rats. J Integr Neurosci. 2015;14(02):223–34. https://doi.org/10.1142/S0219635215500107.

    Article  CAS  PubMed  Google Scholar 

  179. Samuelsson A-M, Jennische E, Hansson H-A, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA A dysregulation and impaired spatial learning. Am J Phys Regul Integr Comp Phys. 2006;290(5):R1345–56. https://doi.org/10.1152/ajpregu.00268.2005.

    Article  CAS  Google Scholar 

  180. Sappenfield E, Jamieson DJ, Kourtis AP. Pregnancy and susceptibility to infectious diseases. Infect Dis Obstet Gynecol. 2013;2013:1–8. https://doi.org/10.1155/2013/752852.

    Article  Google Scholar 

  181. Sasaki J, Yamaguchi A, Nabeshima Y, Shigemitsu S, Mesaki N, Kubo T. Exercise at high temperature causes maternal hyperthermia and fetal anomalies in rats. Teratology. 1995;51(4):233–6. https://doi.org/10.1002/tera.1420510407.

    Article  CAS  PubMed  Google Scholar 

  182. Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to Valproic acid: animal model of autism. Neuropsychopharmacology. 2005;30(1):80–9. https://doi.org/10.1038/sj.npp.1300518.

    Article  CAS  PubMed  Google Scholar 

  183. Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry. 2013;3(3):e240. https://doi.org/10.1038/tp.2013.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23(1):297–302. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12514227

    Article  PubMed  PubMed Central  Google Scholar 

  185. Shi L, Tu N, Patterson PH. Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci. 2005;23(2–3):299–305. https://doi.org/10.1016/j.ijdevneu.2004.05.005.

    Article  PubMed  Google Scholar 

  186. Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, Yeon Kim J, Kim S, Kim H, Waisman A, Littman DR, Wickersham IR, Harnett MT, Huh JR, Choi GB. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 2017;549(7673):482–7. https://doi.org/10.1038/nature23909.

    Article  CAS  PubMed  Google Scholar 

  187. Sisti G, Kanninen TT, Witkin SS. Maternal immunity and pregnancy outcome: focus on preconception and autophagy. Genes Immun. 2016;17(1):1–7. https://doi.org/10.1038/gene.2015.57.

    Article  CAS  PubMed  Google Scholar 

  188. Slavuljica I, Kveštak D, Csaba Huszthy P, Kosmac K, Britt WJ, Jonjić S. Immunobiology of congenital cytomegalovirus infection of the central nervous system – the murine cytomegalovirus model. Cell Mol Immunol. 2015;12(2):180–91. https://doi.org/10.1038/cmi.2014.51.

    Article  CAS  PubMed  Google Scholar 

  189. Smith MS, Upfold JB, Edwards MJ, Shiota K, Cawdell-Smith J. The induction of neural tube defects by maternal hyperthermia: a comparison of the Guinea-pig and human. Neuropathol Appl Neurobiol. 1992;18(1):71–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1579201

    Article  CAS  PubMed  Google Scholar 

  190. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters Fetal brain development through Interleukin-6. J Neurosci 2007. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387067/pdf/nihms42804.pdf.

  191. Smith S, Hsiao E, Patterson PH. Activation of the maternal immune system as a risk factor for neuropsychiatric disorders. In: Maternal influences on fetal neurodevelopment. New York: Springer; 2010. p. 97–115. https://doi.org/10.1007/978-1-60327-921-5_7.

    Chapter  Google Scholar 

  192. Smolders S, Notter T, Smolders SMT, Rigo J-M, Brône B. Controversies and prospects about microglia in maternal immune activation models for neurodevelopmental disorders. Brain Behav Immun. 2018;73:51–65. https://doi.org/10.1016/J.BBI.2018.06.001.

    Article  PubMed  Google Scholar 

  193. Stagno S, Reynolds DW, Amos CS, Dahle AJ, McCollister FP, Mohindra I, Ermocilla R, Alford CA. Auditory and visual defects resulting from symptomatic and subclinical congenital cytomegaloviral and toxoplasma infections. Pediatrics. 1977;59(5):669–78. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/193086

    Article  CAS  PubMed  Google Scholar 

  194. Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai S, Matsumoto K, Tsuchiya KJ, Iwata Y, Nakamura K, Tsujii M, Sugiyama T, Mori N. Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One. 2011;6(5):1–6. https://doi.org/10.1371/journal.pone.0020470.

    Article  CAS  Google Scholar 

  195. Takarae Y, Sweeney J. Neural Hyperexcitability in autism spectrum disorders. Brain Sci. 2017;7(12):129. https://doi.org/10.3390/brainsci7100129.

    Article  CAS  PubMed Central  Google Scholar 

  196. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110(1–3):1–23. https://doi.org/10.1016/J.SCHRES.2009.03.005.

    Article  PubMed  Google Scholar 

  197. Tang B, Capitao C, Dean B, Thomas EA. Differential age- and disease-related effects on the expression of genes related to the arachidonic acid signaling pathway in schizophrenia. Psychiatry Res. 2012;196(2–3):201–6. https://doi.org/10.1016/j.psychres.2011.09.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9. https://doi.org/10.1016/j.bbi.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  199. Toussirot E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets. 2012;11(2):159–68. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22280236

    Article  CAS  PubMed  Google Scholar 

  200. Townsend JJ, Baringer JR, Wolinsky JS, Malamud N, Mednick JP, Panitch HS, Scott RAT, Oshiro LS, Cremer NE. Progressive Rubella Panencephalitis. N Engl J Med. 1975;292(19):990–3. https://doi.org/10.1056/NEJM197505082921902.

    Article  CAS  PubMed  Google Scholar 

  201. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–82. https://doi.org/10.1016/j.bbamcr.2014.05.014.

    Article  CAS  PubMed  Google Scholar 

  202. Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125(2):S24–32. https://doi.org/10.1016/j.jaci.2009.07.016.

    Article  PubMed  Google Scholar 

  203. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res. 2001;47(1):27–36. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11163542

    Article  CAS  PubMed  Google Scholar 

  204. Van den Eynde K, Missault S, Fransen E, Raeymaekers L, Willems R, Drinkenburg W, Timmermans J-P, Kumar-Singh S, Dedeurwaerdere S. Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behav Brain Res. 2014;258:179–86. https://doi.org/10.1016/j.bbr.2013.10.005.

    Article  PubMed  Google Scholar 

  205. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81. https://doi.org/10.1002/ana.20315.

    Article  CAS  PubMed  Google Scholar 

  206. Vermillion MS, Klein SL. Pregnancy and infection: using disease pathogenesis to inform vaccine strategy. Npj Vaccines. 2018;3(1):6. https://doi.org/10.1038/s41541-017-0042-4.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Vuillermot S, Weber L, Feldon J, Meyer U. A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci. 2010;30(4):1270–87. https://doi.org/10.1523/JNEUROSCI.5408-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29(13):3974–80. https://doi.org/10.1523/JNEUROSCI.4363-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Webster WS, Edwards MJ. Hyperthermia and the induction of neural tube defects in mice. Teratology. 1984;29(3):417–25. https://doi.org/10.1002/tera.1420290313.

    Article  CAS  PubMed  Google Scholar 

  210. Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure – a neurodevelopmental rat model of schizophrenia – differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:17–30. https://doi.org/10.1016/J.PNPBP.2014.10.004.

    Article  CAS  Google Scholar 

  211. Yamashita Y, Fujimoto C, Nakajima E, Isagai T, Matsuishi T. Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord. 2003;33(4):455–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12959425

    Article  PubMed  Google Scholar 

  212. Zager A, Pinheiro ML, Ferraz-de-Paula V, Ribeiro A, Palermo-Neto J. Increased cell-mediated immunity in male mice offspring exposed to maternal immune activation during late gestation. Int Immunopharmacol. 2013;17(3):633–7. https://doi.org/10.1016/J.INTIMP.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  213. Zerbo O, Iosif A-M, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord. 2013;43(1):25–33. https://doi.org/10.1007/s10803-012-1540-x.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Zerbo O, Qian Y, Yoshida C, Grether JK, Van de Water J, Croen LA. Maternal infection during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2015;45(12):4015–25. https://doi.org/10.1007/s10803-013-2016-3.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zhang Z, van Praag H. Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice. Brain Behav Immun. 2015;45:60–70. https://doi.org/10.1016/J.BBI.2014.10.010.

    Article  PubMed  Google Scholar 

  216. Zhong F, Cui D, Tao H, Du H, Xing C. IL-17A-producing T cells and associated cytokines are involved in the progression of gastric cancer. Oncol Rep. 2015;34(5):2365–74. https://doi.org/10.3892/or.2015.4246.

    Article  CAS  PubMed  Google Scholar 

  217. Zhu F, Zheng Y, Liu Y, Zhang X, Zhao J. Minocycline alleviates behavioral deficits and inhibits microglial activation in the offspring of pregnant mice after administration of polyriboinosinic–polyribocytidilic acid. Psychiatry Res. 2014;219(3):680–6. https://doi.org/10.1016/j.psychres.2014.06.046.

    Article  CAS  PubMed  Google Scholar 

  218. Ziblat A, Nuñez SY, Raffo Iraolagoitia XL, Spallanzani RG, Torres NI, Sierra JM, Secchiari F, Domaica CI, Fuertes MB, Zwirner NW. Interleukin (IL)-23 stimulates IFN-γ secretion by CD56bright natural killer cells and enhances IL-18-driven dendritic cells activation. Front Immunol. 2018;8:1959. https://doi.org/10.3389/fimmu.2017.01959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zuckerman L, Rehavi M, Nachman R, Weiner I. Immune activation during pregnancy in rats leads to a PostPubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology. 2003;28(10):1778–89. https://doi.org/10.1038/sj.npp.1300248.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmem Gottfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fontes-Dutra, M., Rabelo, B., Santos-Terra, J., Deckmann, I., Schwingel, G.B., Gottfried, C. (2020). Maternal Immune Activation and Neuropsychiatric Disorders: The Intricate Puzzle of Autism Spectrum Disorder. In: Teixeira, A.L., Macedo, D., Baune, B.T. (eds) Perinatal Inflammation and Adult Psychopathology. Progress in Inflammation Research, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-39335-9_11

Download citation

Publish with us

Policies and ethics