Skip to main content

Spectroscopy Techniques for Polariton Research

  • Chapter
  • First Online:
Polariton Physics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 229))

Abstract

The emission from the exciton–polariton state that is formed in a strongly-coupled QW-microcavity system is correlated to the composite quasi-particles’ state. Thus, a direct experimental access to the properties of polariton gases in solids is provided by means of optical spectroscopy. In fact, the light originating from the decay process of the polaritons inside a cavity is emitted under that angle relative to the cavity axis that corresponds to the in-plane momentum component of the cavity mode coupled to the QW exciton mode due to momentum conservation. This renders angle-resolved spectroscopy an indispensable tool for gathering information about the polaritonic system, which is strongly represented by its energy–momentum dispersion and the anti-crossing behaviour of the coupled optical resonances. Therefore, one can conveniently extract characteristics of the system by means of spectroscopy, which give insight into occupation numbers, effective masses and statistical distributions of particles in the system. In addition, time-resolved spectroscopy increases the ability to characterize polariton gases drastically, as the available and established methods shed light on those systems’ dynamics on the most-relevant time scales. Many of the essential techniques will be briefly summarized here and the relevant terminology introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The repetition rate of the streak camera’s deflector unit is adjusted to the laser frequency of the mode-locked laser source, commonly a Titanium-Sapphire oscillator, which typically delivers fs to ps pulses at a rate of 80 MHz for time-resolved photoluminescence experiments.

  2. 2.

    Due to the typically opaque substrates, many white-light spectroscopy measurements on polariton systems are performed in reflection.

References

  1. L. Esaki, New phenomenon in narrow Germanium p-n junctions. Phys. Rev. 109(2), 603–604 (1958)

    Article  ADS  Google Scholar 

  2. C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Höfling, An electrically pumped polariton laser. Nature 497, 348 (2013)

    Article  ADS  Google Scholar 

  3. A. Rahimi-Iman, Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser (Cuvillier Verlag, Göttingen, 2013)

    Google Scholar 

  4. M. Amthor, J. Fischer, I.G. Savenko, I.A. Shelykh, A. Chernenko, A. Rahimi-Iman, V.D. Kulakovskii, S. Reitzenstein, N.Y. Kim, M. Durnev, A.V. Kavokin, Y. Yamamoto, A. Forchel, M. Kamp, C. Schneider, S. Höfling, Exciton-polariton laser diodes, in Proceedings of the SPIE, Nanophotonics and Micro/Nano Optics II, ed. by Z. Zhou, K. Wada (SPIE, 2014)

    Google Scholar 

  5. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature, 443(7110), 409–414 (2006)

    Article  ADS  Google Scholar 

  6. G. Roumpos, M. Lohse, W.H. Nitsche, J. Keeling, M.H. Szymańska, P.B. Littlewood, A. Löffler, S. Höfling, L. Worschech, A. Forchel, Y. Yamamoto, Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl. Acad. Sci. USA (2012). https://doi.org/10.1073/pnas.1107970109.

    Article  ADS  Google Scholar 

  7. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4(9), 706–710 (2008)

    Google Scholar 

  8. G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton-polariton condensate. Nat. Phys. 7(2), 129–133 (2011)

    Article  ADS  Google Scholar 

  9. A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons. Science 332(6034), 1167–1170 (2011)

    Article  ADS  Google Scholar 

  10. L. Dominici, G. Dagvadorj, J.M. Fellows, D. Ballarini, M. De Giorgi, F.M. Marchetti, B. Piccirillo, L. Marrucci, A. Bramati, G. Gigli, M.H. Szymañska, D. Sanvitto, Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci. Adv. 1(11), e1500807 (2015)

    Article  ADS  Google Scholar 

  11. T. Boulier, H. Terças, D.D. Solnyshkov, Q. Glorieux, E. Giacobino, G. Malpuech, A. Bramati, Vortex chain in a resonantly pumped polariton superfluid. Sci. Rep. 5, 09230 (2015)

    Article  ADS  Google Scholar 

  12. H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99(12), 126403 (2007)

    Google Scholar 

  13. C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Coherent zero-state and \(\pi \)-state in an exciton-polariton condensate array. Nature 450(7169), 529–532 (2007)

    Article  ADS  Google Scholar 

  14. R.I. Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J.D. Ganière, J.L. Staehli, V. Savona, B. Deveaud, Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74(15):155311 (2006)

    Google Scholar 

  15. G. Roumpos, W.H. Nitsche, S. Höfling, A. Forchel, Y. Yamamoto, Gain-induced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett. 104(12), 126403 (2010)

    Google Scholar 

  16. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)

    Article  Google Scholar 

  17. E. Wertz, A. Amo, D.D. Solnyshkov, L. Ferrier, T.C.H. Liew, D. Sanvitto, P. Senellart, I. Sagnes, A. Lemaître, A.V. Kavokin, G. Malpuech, J. Bloch, Propagation and amplification dynamics of 1d polariton condensates. Phys. Rev. Lett. 109, 216404 (2012)

    Article  ADS  Google Scholar 

  18. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martín, A. Lemaître, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Viña, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457(7227), 291–295 (2009)

    Article  ADS  Google Scholar 

  19. T. Gao, P.S. Eldridge, T.C.H. Liew, S.I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, P.G. Savvidis, Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012)

    Article  ADS  Google Scholar 

  20. Y.J. Chen, J.D. Cain, T.K. Stanev, V.P. Dravid, N.P. Stern, Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photon. 11(7), 431–435 (2017)

    Article  ADS  Google Scholar 

  21. M. Richard, J. Kasprzak, R. Romestain, R. André, L.S. Dang, Spontaneous coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett. 94(18), 187401 (2005)

    Google Scholar 

  22. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, J. Bloch, Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77(11), 113303 (2008)

    Google Scholar 

  23. F. Veit, M. Aßmann, M. Bayer, A. Löffler, S. Höfling, M. Kamp, A. Forchel, Spatial dynamics of stepwise homogeneously pumped polariton condensates. Phys. Rev. B 86(19), 195313 (2012)

    Google Scholar 

  24. Hamamatsu Photonics, Universal streak camera C10910 series, www.hamamatsu.com/resources/pdf/sys/SHSS0016E_C10910s.pdf

  25. M. Aßmann, J.-S. Tempel, F. Veita, M. Bayer, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl. Acad. Sci. USA 108, 1804–1809 (2011)

    Article  ADS  Google Scholar 

  26. M. Müller, R. André, J. Bleuse, L.S. Dang, A. Huynh, J. Tignon, P. Roussignol, C. Delalande, Non-linear polariton dynamics in II-VI microcavities. Semicond. Sci. Technol. 18(10), S319 (2003)

    Article  ADS  Google Scholar 

  27. J. Bloch, B. Sermage, M. Perrin, P. Senellart, R. André, L.S. Dang, Monitoring the dynamics of a coherent cavity polariton population. Phys. Rev. B 71(15), 155311 (2005)

    Google Scholar 

  28. J.J. Baumberg, P.G. Lagoudakis, Parametric amplification and polariton liquids in semiconductor microcavities. Phys. Status Solidi (b) 242(11), 2210–2223 (2005)

    Article  ADS  Google Scholar 

  29. D. Ballarini, D. Sanvitto, A. Amo, L. Viña, M. Wouters, I. Carusotto, A. Lemaître, J. Bloch, Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102(5), 056402 (2009)

    Article  ADS  Google Scholar 

  30. M. Steger, C. Gautham, D.W. Snoke, L. Pfeiffer, K. West, Slow reflection and two-photon generation of microcavity exciton-polaritons. Optica 2(1), 1 (2015)

    Article  ADS  Google Scholar 

  31. M. De Giorgi, D. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, D. Sanvitto, Relaxation oscillations in the formation of a polariton condensate. Phys. Rev. Lett. 112(11), 113602 (2014)

    Article  ADS  Google Scholar 

  32. R.A. Kaindl, M.A. Carnahan, D. Hägele, R. Lövenich, D.S. Chemla, Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423(6941), 734–738 (2003)

    Article  ADS  Google Scholar 

  33. J.L. Tomaino, A.D. Jameson, Y.-S. Lee, G. Khitrova, H.M. Gibbs, A.C. Klettke, M. Kira, S.W. Koch, Terahertz excitation of a coherent \(\Lambda \)-type three-level system of exciton-polariton modes in a quantum-well microcavity. Phys. Rev. Lett. 108(26), 267402 (2012)

    Google Scholar 

  34. A.D. Jameson, J.L. Tomaino, Y.-S. Lee, G. Khitrova, H.M. Gibbs, C.N. Böttge, A.C. Klettke, M. Kira, S.W. Koch, Direct measurement of light-matter energy exchange inside a microcavity. Optica 1(5), 276 (2014)

    Article  ADS  Google Scholar 

  35. A.E. Almand-Hunter, H. Li, S.T. Cundiff, M. Mootz, M. Kira, S.W. Koch, Quantum droplets of electrons and holes. Nature 506(7489), 471–475 (2014)

    Article  ADS  Google Scholar 

  36. L. Dominici, D. Colas, S. Donati, J.P.R. Cuartas, M. De Giorgi, D. Ballarini, G. Guirales, J.C.L. Carreño, A. Bramati, G. Gigli, E. Del Valle, F.P. Laussy, D. Sanvitto, Ultrafast control and Rabi oscillations of polaritons. Phys. Rev. Lett. 113(22), 226401 (2014)

    Google Scholar 

  37. D. Colas, L. Dominici, S. Donati, A.A. Pervishko, T.C.H. Liew, I.A. Shelykh, D. Ballarini, M. De Giorgi, A. Bramati, G. Gigli, E. Del Valle, F.P. Laussy, A.V. Kavokin, D. Sanvitto, Polarization shaping of Poincaré beams by polariton oscillations. Light Sci. Appl. 4, e350 (2015)

    Article  Google Scholar 

  38. J.M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, R. Huber, Revealing the dark side of a bright exciton-polariton condensate. Nat. Commun. 5, 4648 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Rahimi-Iman .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahimi-Iman, A. (2020). Spectroscopy Techniques for Polariton Research. In: Polariton Physics. Springer Series in Optical Sciences, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-39333-5_7

Download citation

Publish with us

Policies and ethics