Skip to main content

Optical Microcavities for Polariton Studies

  • Chapter
  • First Online:
Polariton Physics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 229))

Abstract

In the past two decades, optical microcavities with very high optical quality and their rapid development substantially enabled the achievement of polariton condensation and the investigation of bosonic many-body phenomena such as superfluidity and Bose–Einstein condensation . Similarly, the demonstration of a polariton-laser device strongly relied on technological advances in the fabrication of multi-quantum-well (QW) microresonators. In this context, the general design and concept of optical structures for polariton physics will be summarized and the prominent example of a planar microcavity based on III/V semiconductors introduced. Beginning with the concept of planar Fabry–Pérot microcavities with an optical cavity sandwiched between Bragg mirrors, the principles of QW-based polariton structures will be explained. Thereafter, the resonator properties such as the transmission function, density of states and quality factor will be summarized which are relevant for the experimental realization of polaritons in practical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Positive-intrinsic-negative doping.

References

  1. J. Vaughan, The Fabry-Perot interferometer (Hilger, 1989)

    Google Scholar 

  2. J.K. Vahala, Optical microcavities. Nature 424(6950), 839–846 (2003)

    Article  ADS  Google Scholar 

  3. S. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (John Wiley & Sons, 2003)

    Google Scholar 

  4. M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Strong coupling phenomena in quantum microcavity structures. Semicond. Sci. Technol. 13, 645–669 (1998)

    Article  ADS  Google Scholar 

  5. Ioffe-Institute. Electronic Archive: New Semiconductor Materials. Characteristics and Properties (St. Petersburg, 2012) http://www.ioffe.ru/SVA/NSM

  6. A.V. Kavokin, J. Jeremy, G. Malpuech, F.P. Laussy, Microcavities. (Oxford University Press, Baumberg, 2007)

    Google Scholar 

  7. Renchun Tao, Kenji Kamide, Munetaka Arita, Satoshi Kako, Yasuhiko Arakawa, Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed bragg reflectors. ACS Photonics 3(7), 1182–1187 (2016)

    Article  Google Scholar 

  8. P. Bienstman, R. Baets, Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33(4–5), 327–341 (2001)

    Article  Google Scholar 

  9. Z. Knittl, Optics of Thin Films; an Optical Multilayer Theory (Wiley, 1976)

    Google Scholar 

  10. V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun. 93(9), 733–739 (1995)

    Article  ADS  Google Scholar 

  11. Hui Deng, Hartmut Haug, Yoshihisa Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82(2), 1489 (2010)

    Article  ADS  Google Scholar 

  12. A. Rahimi-Iman, Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser. (Cuvillier Verlag Göttingen, 2013)

    Google Scholar 

  13. J.M. Gérard, D. Barrier, J.Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry Mieg, T. Rivera, Quantum boxes as active probes for photonic microstructures: the pillar microcavity case. Appl. Phys. Lett. 69, 449 (1996)

    Article  ADS  Google Scholar 

  14. J.P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P.A. Knipp, T.L. Reinecke, Size dependence of confined optical modes in photonic quantum dots. Phys. Rev. Lett. 78(2), 378–381 (1997)

    Article  ADS  Google Scholar 

  15. Daniele Bajoni, Pascale Senellart, Esther Wertz, Isabelle Sagnes, Audrey Miard, Aristide Lemaître, Jacqueline Bloch, Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities, Phys. Rev. Lett. 100(4), 047401 (2008)

    Article  ADS  Google Scholar 

  16. S. Reitzenstein, A. Forchel, Quantum dot micropillars. J. Phys. D: Appl. Phys. 43(3), 033001 (2010)

    Article  ADS  Google Scholar 

  17. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J.L. Staehli, F. Morier-Genoud, B. Deveaud, Polariton quantum boxes in semiconductor microcavities. Appl. Phys. Lett. 88(6), 061105 (2006)

    Article  ADS  Google Scholar 

  18. Andreas Muller, Chih-Kang Shih, Lu Jaemin Ahn, Deepa Gazula Dingyuan, Dennis G. Deppe, High Q (33 000) all-epitaxial microcavity for quantum dot vertical-cavity surface-emitting lasers and quantum light sources. Appl. Phys. Lett. 88, 031107 (2006)

    Article  ADS  Google Scholar 

  19. P. Lugan, D. Sarchi, V. Savona, Theory of trapped polaritons in patterned microcavities. Phys. Stat. Sol. (c) 3, 2428–2431 (2006)

    Article  ADS  Google Scholar 

  20. S. Portolan, P. Hauke, V. Savona, Parametric photoluminescence of spatially confined polaritons in patterned microcavities. Phys. Stat. Sol. (b) 245(6), 1089–1092 (2008)

    Article  ADS  Google Scholar 

  21. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)

    Article  Google Scholar 

  22. J. Fischer, I.G. Savenko, M.D. Fraser, S. Holzinger, S. Brodbeck, M. Kamp, I.A. Shelykh, C. Schneider, S. Höfling, Spatial coherence properties of one dimensional exciton-polariton condensates. Phys. Rev. Lett. 113(20), 203902 (2014)

    Article  ADS  Google Scholar 

  23. S. Azzini, D. Gerace, M, Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, D. Bajoni, Ultra-low threshold polariton lasing in photonic crystal cavities. Appl. Phys. Lett. 99(11), 111106 (2011)

    Article  ADS  Google Scholar 

  24. A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84(16), 165325 (2011)

    Article  ADS  Google Scholar 

  25. X. Liu, T. Galfsky, Z. Sun, F. Xia, E.C. Lin, Y.H. Lee, S. Kéna-Cohen, V.M. Menon, Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9(1), 30–34 (2014)

    Article  ADS  Google Scholar 

  26. S. Dufferwiel, S. Schwarz, F. Withers, A.A.P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D.D. Solnyshkov, G. Malpuech, K.S. Novoselov, J.M. Smith, M.S. Skolnick, D.N. Krizhanovskii, A.I. Tartakovskii, Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015)

    Google Scholar 

  27. L.C. Flatten, Z. He, D.M. Coles, A.A.P. Trichet, A.W. Powell, R.A. Taylor, J.H. Warner, J.M. Smith, Room-temperature exciton-polaritons with two-dimensional WS 2. Sci. Rep. 6, 33134 (2016)

    Google Scholar 

  28. P. Qing, J. Gong, X. Lin, N. Yao, W. Shen, A. Rahimi-Iman, W. Fang, L. Tong, A simple approach to fiber-based tunable microcavity with high coupling efficiency. Appl. Phys. Lett. 114, 021106 (2019)

    Article  ADS  Google Scholar 

  29. A. Rahimi-Iman, A.V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, M. Kamp, Coherence signatures and density-dependent interaction in a dynamical exciton-polariton condensate. Phys. Rev. B 86(15), 155308 (2012)

    Article  ADS  Google Scholar 

  30. Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, 2000)

    Google Scholar 

  31. A. Kavokin, G. Malpuech, Cavity Polaritons (Academic Press, 2003)

    Google Scholar 

  32. B. Deveaud. The Physics of Semiconductor Microcavities. (WILEY-VCH Verlag, 2007)

    Google Scholar 

  33. J. Bloch, T. Freixanet, J.Y. Marzin, V. Thierry-Mieg, R. Planel, Giant Rabi splitting in a microcavity containing distributed quantum wells. Appl. Phys. Lett. 73(12), 1694–1696 (1998)

    Article  ADS  Google Scholar 

  34. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298(5591), 199–202 (2002)

    Article  ADS  Google Scholar 

  35. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69(23), 3314 (1992)

    Article  ADS  Google Scholar 

  36. R. Houdré, R.P. Stanley, U. Oesterle, M. Ilegems, C. Weisbuch, Room-temperature cavity polaritons in a semiconductor microcavity. Phys. Rev. B 49(23), 16761 (1994)

    Article  ADS  Google Scholar 

  37. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. Si Dang. Bose-Einstein condensation of exciton polaritons. Nature 443(7110), 409–414 (2006)

    Article  ADS  Google Scholar 

  38. R. Houdré, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, M. Ilegems, Saturation of the strong-coupling regime in a semiconductor microcavity: free-carrier bleaching of cavity polaritons. Phys. Rev. B 52(11), 7810 (1995)

    Article  ADS  Google Scholar 

  39. J. Bloch, B. Sermage, C. Jacquot, P. Senellart, V. Thierry-Mieg, Time-resolved measurement of stimulated polariton relaxation. Phys. Stat. Sol. (a) 190, 827–831 (2002)

    Article  ADS  Google Scholar 

  40. S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, A GaAs polariton light-emitting diode operating near room temperature. Nature 453(7193), 372–375 (2008)

    Article  ADS  Google Scholar 

  41. Alexey Kavokin, Guillaume Malpuech, Fabrice P. Laussy, Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A 306(4), 187–199 (2003)

    Article  ADS  Google Scholar 

  42. Daniele Bajoni, Elizaveta Semenova, Aristide Lemaître, Sophie Bouchoule, Esther Wertz, Pascale Senellart, Jacqueline Bloch, Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77(11), 113303 (2008)

    Article  ADS  Google Scholar 

  43. A.A. Khalifa, A.P.D. Love, D.N. Krizhanovskii, M.S. Skolnick, J.S. Roberts, Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92(6), 061107 (2008)

    Article  ADS  Google Scholar 

  44. Leo Esaki, New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109(2), 603–604 (1958)

    Article  ADS  Google Scholar 

  45. T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, K.J. Ebeling, Multistage bipolar cascade vertical-cavity surface-emitting lasers: theory and experiment. IEEE JSTQE 9(5), 1406 (2003)

    ADS  Google Scholar 

  46. S. Brodbeck, J.-P. Jahn, A. Rahimi-Iman, J. Fischer, M. Amthor, S. Reitzenstein, M. Kamp, C. Schneider, S. Höfling, Room temperature polariton light emitting diode with integrated tunnel junction. Opt. Express 21(25), 31098–31104 (2013)

    Article  ADS  Google Scholar 

  47. T.C.H. Liew, I.A. Shelykh, G. Malpuech, Polaritonic devices. Phys. E: Low-Dimens. Syst. Nanostructures 43(9), 1543–1568 (2011)

    Article  ADS  Google Scholar 

  48. K. Vahala, Optical microcavities. (World Scientific, 2004)

    Google Scholar 

  49. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities, vol. 1. (Oxford University Press, 2017)

    Google Scholar 

  50. T. Gutbrod, M. Bayer, A. Forchel, J.P. Reithmaier, T.L. Reinecke, S. Rudin, P.A. Knipp, Weak and strong coupling of photons and excitons in photonic dots. Phys. Rev. B 57(16), 9950 (1998)

    Article  ADS  Google Scholar 

  51. C.F. Klingshirn, Semiconductor Optics. (Springer, 2012)

    Google Scholar 

  52. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)

    Article  ADS  Google Scholar 

  53. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)

    Article  ADS  Google Scholar 

  54. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)

    Google Scholar 

  55. M. Bayer, T. Gutbrod, J.P. Reithmaier, A. Forchel, T.L. Reinecke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii, Optical modes in photonic molecules. Phys. Rev. Lett. 81(12), 2582–2585 (1998)

    Article  ADS  Google Scholar 

  56. M. Bayer, T. Gutbrod, A. Forchel, T.L. Reinecke, P.A. Knipp, R. Werner, J.P. Reithmaier, Optical demonstration of a crystal band structure formation. Phys. Rev. Lett. 83(25), 5374–5377 (1999)

    Article  ADS  Google Scholar 

  57. M. Born, E. Wolf, Principals of Optics (Cambridge University Press, 1999)

    Google Scholar 

  58. C. Wilmsen, H. Temkin, L.A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, 1999)

    Google Scholar 

  59. A. Löffler, J.P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, A. Forchel, Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions. Appl. Phys. Lett. 86, 111105 (2005)

    Article  ADS  Google Scholar 

  60. E. F. Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge University Press, 2006)

    Google Scholar 

  61. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, M. Hetterich, Dependencies of micro-pillar cavity quality factors calculated with finite element methods. Opt. Express 17(2), 1144–1158 (2009)

    Article  ADS  Google Scholar 

  62. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S.H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90(25), 251109 (2007)

    Article  ADS  Google Scholar 

  63. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, J.M. Gérard, Electrically driven high-Q quantum dot-micropillar cavities. Appl. Phys. Lett. 92(9), 091107 (2008)

    Article  ADS  Google Scholar 

  64. C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Hoefling, An electrically pumped polariton laser. Nature 497, 348 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Rahimi-Iman .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahimi-Iman, A. (2020). Optical Microcavities for Polariton Studies. In: Polariton Physics. Springer Series in Optical Sciences, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-39333-5_5

Download citation

Publish with us

Policies and ethics