Abstract
First-order (FO) transition systems have recently attracted attention for the verification of parametric systems such as network protocols, software-defined networks or multi-agent workflows like conference management systems. Functional correctness or noninterference of these systems have conveniently been formulated as safety or hypersafety properties, respectively. In this article, we take the step from verification to synthesis—tackling the question whether it is possible to automatically synthesize predicates to enforce safety or hypersafety properties like noninterference. For that, we generalize FO transition systems to FO safety games. For FO games with monadic predicates only, we provide a complete classification into decidable and undecidable cases. For games with non-monadic predicates, we concentrate on universal first-order invariants, since these are sufficient to express a large class of properties—for example noninterference. We identify a non-trivial sub-class where invariants can be proven inductive and FO winning strategies be effectively constructed. We also show how the extraction of weakest FO winning strategies can be reduced to SO quantifier elimination itself. We demonstrate the usefulness of our approach by automatically synthesizing nontrivial FO specifications of messages in a leader election protocol as well as for paper assignment in a conference management system to exclude unappreciated disclosure of reports.
Keywords
- First order safety games
- Universal invariants
- First Order Logic
- Second order quantifier elimination
The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 787367 (PaVeS) as well as grant agreement No. 683300 (OSARES). This work was also partially supported by the German Research Foundation (DFG) as part of the Collaborative Research Center “Foundations of Perspicuous Software Systems” (TRR 248, 389792660).
This is a preview of subscription content, access via your institution.
Buying options



Notes
- 1.
In general, edges may use multiple input predicates of the same type. This can, however, always be simulated by a sequence of edges that stores the contents of the input relations in auxiliary predicates from \({\mathcal {R}_{ state }}\) one by one, before realizing the substitution of the initial edge by means of the auxiliary predicates.
- 2.
Predicates under the control of player \(\mathcal {B}\) can be used to introduce equalities through SO existential quantifier elimination (see [31]).
- 3.
The Bernays-Schönfinkel-Ramsey fragment contains all formulas of First Order Logic that have a quantifier prefix of \(\exists ^*\forall ^*\) and do not contain function symbols. Satisfiability of formulas in BSR is known to be decidable [28].
References
Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik. Math. Ann. 110, 390–413 (1935)
de Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 74–89. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_6
Ball, T., et al.: Vericon: towards verifying controller programs in software-defined networks. In: ACM Sigplan Notices, vol. 49, pp. 282–293. ACM (2014)
Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem. Math. Ann. 86(3–4), 163–229 (1922)
Börger, E., Stärk, R.: History and survey of ASM research. In: Börger, E., Stärk, R. (eds.) Abstract State Machines, pp. 343–367. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-18216-7_9
Börger, E., Stärk, R.: Tool support for ASMs. In: Börger, E., Stärk, R. (eds.) Abstract State Machines, pp. 313–342. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-18216-7_8
Brachman, R.J., Levesque, H.J., Reiter, R.: Knowledge Representation. MIT Press, Cambridge (1992)
Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Dimitrova, R., Finkbeiner, B.: Abstraction refinement for games with incomplete information. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science FSTTCS, vol. 2008, pp. 175–186 (2008)
Dimitrova, R., Finkbeiner, B.: Counterexample-guided synthesis of observation predicates. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 107–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_9
Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security policies in multi-agent workflows with loops. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 633–645. IEEE (2017). https://doi.org/10.1145/3133956.3134080
Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy in workflows with arbitrarily many agents. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 157–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_11
Gabbay, D.M., Schmidt, R., Szalas, A.: Second Order Quantifier Elimination: Foundations. Computational Aspects and Applications. College Publications, Michigan (2008)
Gurevich, Y.: Evolving algebras 1993: Lipari guide. arXiv preprint arXiv:1808.06255 (2018)
Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 886–902. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_69
Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: origins and directions. Theoret. Comput. Sci. 412(1–2), 83–96 (2011)
Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-directed inference of universal invariants or proving their absence. J. ACM (JACM) 64(1), 7 (2017)
Miller, D.A., Nadathur, G.: Higher-order logic programming. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 448–462. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16492-8_94
Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic programming language for dynamic domains. J. Logic Programm. 31(1), 59–83 (1997). https://doi.org/10.1016/S0743-1066(96)00121-5
Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4_2
McMillan, K.L., Padon, O.: Deductive verification in decidable fragments with ivy. In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 43–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99725-4_4
Müller, C., Seidl, H., Zalinescu, E.: Inductive invariants for noninterference in multi-agent workflows. In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, UK, 9–12 July 2018, pp. 247–261. IEEE (2018). https://doi.org/10.1109/CSF.2018.00025
Padon, O., Immerman, N., Karbyshev, A., Lahav, O., Sagiv, M., Shoham, S.: Decentralizing SDN policies. In: ACM SIGPLAN Notices, vol. 50, pp. 663–676. ACM (2015)
Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: Decidability of inferring inductive invariants. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, pp. 217–231. ACM (2016). https://doi.org/10.1145/2837614.2837640
Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning about distributed protocols. Proc. ACM Programm. Lang. 1(OOPSLA), 108 (2017)
Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verification by interactive generalization. ACM SIGPLAN Notices 51(6), 614–630 (2016)
Ramsey, F.P.: On a problem of formal logic. In: Gessel, I., Rota, G.C. (eds.) Classic Papers in Combinatorics. MBC, pp. 1–24. Birkhäuser, Boston (2009). https://doi.org/10.1007/978-0-8176-4842-8_1
Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10(5), 388–394 (1966)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Kuala Lumpur (2016)
Seidl, H., Müller, C., Finkbeiner, B.: How to win first-order safety games. arXiv preprint arXiv:1908.05964 (2019)
Seidl, H., Müller, C., Finkbeiner, B.: How to win first order safety games - software artifact, October 2019. https://doi.org/10.5281/zenodo.3514277
Spielmann, M.: Abstract state machines: verification problems and complexity. Ph.D. thesis, RWTH Aachen University, Germany (2000). http://sylvester.bth.rwth-aachen.de/dissertationen/2001/008/01_008.pdf
Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: 2014 Formal Methods in Computer-Aided Design (FMCAD), pp. 219–226, October 2014. https://doi.org/10.1109/FMCAD.2014.6987617
Wernhard, C.: Second-order quantifier elimination on relational monadic formulas – a basic method and some less expected applications. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 253–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_18
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Seidl, H., Müller, C., Finkbeiner, B. (2020). How to Win First-Order Safety Games. In: Beyer, D., Zufferey, D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2020. Lecture Notes in Computer Science(), vol 11990. Springer, Cham. https://doi.org/10.1007/978-3-030-39322-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-39322-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39321-2
Online ISBN: 978-3-030-39322-9
eBook Packages: Computer ScienceComputer Science (R0)