Skip to main content

Language Inclusion for Finite Prime Event Structures

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11990))

  • 590 Accesses

Abstract

We study the problem of language inclusion between finite, labeled prime event structures. Prime event structures are a formalism to compactly represent concurrent behavior of discrete systems. A labeled prime event structure induces a language of sequences of labels produced by the represented system. We study the problem of deciding inclusion and membership for languages encoded by finite prime event structures and provide complexity results for both problems. We provide a family of examples where prime event structures are exponentially more succinct than formalisms that do not take concurrency into account. We provide a decision algorithm for language inclusion that exploits this succinctness. Furthermore, we provide an implementation of the algorithm and an evaluation on a series of benchmarks. Finally, we demonstrate how our results can be applied to mutation-based test case generation.

This work has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737459 (project Productive 4.0), which receives support from the European Union Horizon 2020 research and innovation program and Germany, Austria, France, Czech Republic, Netherlands, Belgium, Spain, Greece, Sweden, Italy, Ireland, Poland, Hungary, Portugal, Denmark, Finland, Luxembourg, Norway, Turkey, from the by ECSEL Joint Undertaking under the project H2020 737469 AutoDrive—Advancing failaware, fail-safe, and fail-operational electronic components, systems, and architectures for fully automated driving to make future mobility safer, affordable, and end-user acceptable, from the LogiCS doctoral program W1255-N23 of the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund (WWTF) through the projects Heisenbugs project VRG11-005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_14

    Chapter  MATH  Google Scholar 

  2. Bertoni, A., Mauri, G., Sabadini, N.: Equivalence and membership problems for regular trace languages. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 61–71. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0012757

    Chapter  MATH  Google Scholar 

  3. Bertoni, A., Mauri, G., Sabadini, N.: Membership problems for regular and context-free trace languages. Inf. Comput. 82(2), 135–150 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bouajjani, A., Enea, C., Lahiri, S.K.: Abstract semantic diffing of evolving concurrent programs. In: Ranzato, F. (ed.) Proceedings of the Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, 30 August–1 September 2017, LNCS, vol. 10422, pp. 46–65. Springer (2017). https://doi.org/10.1007/978-3-319-66706-5_3

    Chapter  Google Scholar 

  5. Boudol, G.: Flow event structures and flow nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2_4

    Chapter  Google Scholar 

  6. Černý, P., et al.: From non-preemptive to preemptive scheduling using synchronization synthesis. Formal Methods Syst. Des. 50(2), 97–139 (2017)

    Article  Google Scholar 

  7. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 457–533. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_8

    Chapter  Google Scholar 

  8. Dietsch, D., Jakobs, M.C.: VMCAI 2020 virtual machine, November 2019. https://doi.org/10.5281/zenodo.3533104

  9. Clarke, J.E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking. 2nd edn. MIT Press (2018)

    Google Scholar 

  10. Esparza, J.: Decidability and complexity of Petri net problems — an introduction. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_20

    Chapter  MATH  Google Scholar 

  11. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bull. EATCS 52, 244–262 (1994)

    MATH  Google Scholar 

  12. Fatès, N.: A guided tour of asynchronous cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 15–30. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40867-0_2

    Chapter  MATH  Google Scholar 

  13. Fellner, A., Krenn, W., Schlick, R., Tarrach, T., Weissenbacher, G.: Model-based, mutation-driven test-case generation via heuristic-guided branching search. ACM Trans. Embed. Comput. Syst. 18(1), 4:1–4:28 (2019)

    Article  Google Scholar 

  14. Fellner, A., Tarrach, T., Weissenbacher, G.: Language inclusion for finite prime event structures (2019). https://arxiv.org/abs/1911.06355

  15. Fellner, A., Tarrach, T., Weissenbacher, G.: Language Inclusion for Finite Prime Event Structures. Artifact (2019). https://doi.org/10.5281/zenodo.3514619

  16. Friedman, E.P.: The inclusion problem for simple languages. Theor. Comput. Sci. 1(4), 297–316 (1976)

    Article  MathSciNet  Google Scholar 

  17. Gaubert, S., Giua, A.: Petri net languages and infinite subsets of Nm. J. Comput. Syst. Sci. 59(3), 373–391 (1999). https://doi.org/10.1006/jcss.1999.1634

    Article  MATH  Google Scholar 

  18. van Glabbeek, R., Goltz, U.: Refinement of actions in causality based models. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 267–300. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52559-9_68

    Chapter  Google Scholar 

  19. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and Petri nets. Theor. Comput. Sci. 410(41), 4111–4159 (2009)

    Article  MathSciNet  Google Scholar 

  20. Godefroid, P.: Partial-order methods for the verification of concurrent systems (1996)

    Google Scholar 

  21. Grabowski, J.: The unsolvability of some Petri net language problems. Inf. Process. Lett. 9(2), 60–63 (1979). https://doi.org/10.1016/0020-0190(79)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Hack, M.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1976). http://hdl.handle.net/1721.1/27441

  23. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. 3rd edn. Pearson (2013)

    Google Scholar 

  24. Jancar, P.: Nonprimitive recursive complexity and undecidability for Petri net equivalences. Theor. Comput. Sci. 256(1–2), 23–30 (2001). https://doi.org/10.1016/S0304-3975(00)00100-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri nets. Theor. Comput. Sci. 4(3), 277–299 (1977). https://doi.org/10.1016/0304-3975(77)90014-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  27. Ko, K.I., Lin, C.L.: On the complexity of min-max optimization problems and their approximation. In: Du, D.Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimization and Its Applications, vol. 4, pp. 219–239. Springer, Boston (1995). https://doi.org/10.1007/978-1-4613-3557-3_15

    Chapter  Google Scholar 

  28. Lamport, L., et al.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)

    Google Scholar 

  29. Madhusudan, P.: Model-checking trace event structures. In: Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS 2003), Ottawa, Canada, 22–25 June 2003, pp. 371–380. IEEE Computer Society (2003). https://doi.org/10.1109/LICS.2003.1210077

  30. Mayr, R., Clemente, L.: Advanced automata minimization. In: ACM SIGPLAN Notices, vol. 48, pp. 63–74. ACM (2013)

    Google Scholar 

  31. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17906-2_30

    Chapter  Google Scholar 

  32. Mazurkiewicz, A.: Introduction to trace theory. In: The Book of Traces, pp. 3–41 (1995)

    Chapter  Google Scholar 

  33. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: SWAT (FOCS), pp. 125–129 (1972)

    Google Scholar 

  34. Nguyen, H.T.T., Rodríguez, C., Sousa, M., Coti, C., Petrucci, L.: Quasi-optimal partial order reduction. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 354–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_22

    Chapter  Google Scholar 

  35. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part I. Theor. Comput. Sci. 13(1), 85–108 (1981)

    Article  Google Scholar 

  36. Penczek, W.: Model-checking for a subclass of event structures. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 145–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035386

    Chapter  Google Scholar 

  37. Peterson, J.: Petri Net Theory and the Modeling of Systems. Independently Published (2019). https://books.google.at/books?id=IthLyAEACAAJ

  38. Rodríguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order reduction. In: 26th International Conference on Concurrency Theory (CONCUR 2015), pp. 456–469 (2015)

    Google Scholar 

  39. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata. SIAM J. Comput. 14(3), 598–611 (1985)

    Article  MathSciNet  Google Scholar 

  40. Valk, R., Vidal-Naquet, G.: Petri nets and regular languages. J. Comput. Syst. Sci. 23(3), 299–325 (1981). https://doi.org/10.1016/0022-0000(81)90067-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1_36

    Chapter  Google Scholar 

  42. Van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Informatica 37(4–5), 229–327 (2001)

    Article  MathSciNet  Google Scholar 

  43. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0013026

    Chapter  Google Scholar 

  44. Winskel, G.: Event structures, stable families and concurrent games (2016)

    Google Scholar 

  45. Winskel, G., Nielsen, M.: Handbook of logic in computer science. In: Models for Concurrency, vol. 4, pp. 1–148. Oxford University Press Inc., New York (1995). http://dl.acm.org/citation.cfm?id=218623.218630

  46. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 23–33 (1976)

    Article  MathSciNet  Google Scholar 

  47. Zielonka, W.: Notes on finite asynchronous automata. RAIRO-Theor. Inf. Appl. 21(2), 99–135 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Weissenbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fellner, A., Tarrach, T., Weissenbacher, G. (2020). Language Inclusion for Finite Prime Event Structures. In: Beyer, D., Zufferey, D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2020. Lecture Notes in Computer Science(), vol 11990. Springer, Cham. https://doi.org/10.1007/978-3-030-39322-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39322-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39321-2

  • Online ISBN: 978-3-030-39322-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics