Skip to main content

Discrete Competitive Facility Location by Ranking Candidate Locations

  • Chapter
  • First Online:
Data Science: New Issues, Challenges and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 869))

  • 829 Accesses

Abstract

Competitive facility location is a strategic decision for firms providing goods or services and competing for the market share in a geographical area. There are different facility location models and solution procedures proposed in the literature which vary on their ingredients, such as location space, customer behavior, objective function(s), etc. In this paper we focus on two discrete competitive facility location problems: a single objective discrete facility location problem for an entering firm and a bi-objective discrete facility location problem for firm expansion. Two random search algorithms for discrete facility location based on ranking of candidate locations are described and the results of their performance investigation are discussed. It is shown that the ranking of candidate locations is a suitable strategy for discrete facility location as the algorithms are able to determine the optimal solution for different instances of the facility location problem or approximate the optimal solution with a reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboolian R, Berman O, Krass D (2008) Optimizing pricing and location decisions for competitive service facilities charging uniform price. J Oper Res Soc 59(11):1506–1519

    Article  Google Scholar 

  • Ashtiani M (2016) Competitive location: a state-of-art review. Int J Ind Eng Comput 7(1):1–18

    Google Scholar 

  • Balinski M (1965) Integer programming: methods, uses and computation. Manage Sci 24:253–313

    Article  MathSciNet  Google Scholar 

  • Chinchuluun A, Pardalos PM (2007) A survey of recent developments in multiobjective optimization. Ann Oper Res 154(1):29–50

    Article  MathSciNet  Google Scholar 

  • Chinchuluun A, Pardalos PM, Migdalas A, Pitsoulis L (eds) (2008) Pareto optimality, game theory and equilibria. In: Springer optimization and its applications, vol 17. Springer, New York

    Google Scholar 

  • Christaller W (1950) Das grundgerust der raumlichen ordnung in europa : Die systeme der europaischen zentralen orte. Frankfurter Geographische Hefte 24:96S

    Google Scholar 

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, VNR computer library

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Doerner KF, Gutjahr WJ, Nolz PC (2009) Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31(3):651–678

    Article  MathSciNet  Google Scholar 

  • Drezner T (2014) A review of competitive facility location in the plane. Logistics Res 7(1):114

    Article  MathSciNet  Google Scholar 

  • Drezner T, Drezner Z (2004) Finding the optimal solution to the huff based competitive location model. Comput Manage Sci 1(2):193–208

    Article  Google Scholar 

  • Eiselt HA, Marianov V, Drezner T (2015) Competitive location models. In: Laporte G, Nickel S, Saldanha da Gama F (eds) Location science. Springer International Publishing, Cham, pp 365–398

    Google Scholar 

  • Farahani RZ, SteadieSeifi M, Asgari N (2010) Multiple criteria facility location problems: a survey. Appl Math Model 34(7):1689–1709

    Article  MathSciNet  Google Scholar 

  • Fernández P, Pelegrín B, Lančinskas A, Žilinskas J (2017) New heuristic algorithms for discrete competitive location problems with binary and partially binary customer behavior. Comput Oper Res 79:12–18

    Article  MathSciNet  Google Scholar 

  • FICO Xpress Mosel (2014) Fair Isaac Corporation

    Google Scholar 

  • Fischer K (2011) Central places: the theories of von Thünen, Christaller, and Lösch. In: Eiselt HA, Marianov V (eds) Found Location Anal. Springer, US, pp 471–505

    Chapter  Google Scholar 

  • Francis R, Lowe T, Tamir A (2002) Demand point aggregation for location models. In: Drezner Z, Hamacher H (eds) Facility Location Appl Theor. Springer, Berlin Heidelberg, pp 207–232

    Chapter  Google Scholar 

  • Ghosh A, Craig C (1991) FRANSYS: a franchise distribution system location model. J Retail 64(4):466–495

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA

    Google Scholar 

  • Hakimi L (1995) Location with spatial interactions: competitive locations and games. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 367–386

    Google Scholar 

  • Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Oper Res 12(3):450–459

    Article  Google Scholar 

  • Hakimi SL (1965) Optimal distribution of switching centers in a communication network and some related theoretic graph problems. Oper Res 13:462–475

    Article  Google Scholar 

  • Hendrix E, Lančinskas A (2015) On benchmarking stochastic global optimization algorithms. Informatica 26(4):649–662

    Article  MathSciNet  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Michigan

    Google Scholar 

  • Huff D (1964) Defining and estimating a trade area. J Mark 28:34–38

    Article  Google Scholar 

  • Jaramillo JH, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve location problems. Comput Oper Res 29(6):761–779

    Article  MathSciNet  Google Scholar 

  • Lančinskas A, Fernández P, Pelegrín B, Žilinskas J (2016) Solution of discrete competitive facility location problem for firm expansion. Informatica 27(2):451–462

    Article  Google Scholar 

  • Lančinskas A, Fernández P, Pelegrín B, Žilinskas J (2017) Improving solution of discrete competitive facility location problems. Optim Lett 11(2):259–270

    Article  MathSciNet  Google Scholar 

  • Liao SH, Hsieh CL (2009) A capacitated inventory-location model: formulation, solution approach and preliminary computational results. In: Chien BC, Hong TP, Chen SM, Ali M (eds) Next-generation applied intelligence. Springer, Berlin Heidelberg, pp 323–332

    Chapter  Google Scholar 

  • Lösch A (1940) Die räumliche Ordnung der Wirtschaft: eine Untersuchung über Standort. Fischer, Wirtschaftsgebiete und internationalen Handel. G

    Google Scholar 

  • Medaglia AL, Villegas JG, Rodríguez-Coca DM (2009) Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J Heuristics 15(2):153

    Article  Google Scholar 

  • Montibeller G, Franco A (2010) Multi-criteria decision analysis for strategic decision making. In: Applied optimization, vol 103. Springer, Berlin Heidelberg

    Google Scholar 

  • Peeters PH, Plastria F (1998) Discretization results for the Huff and Pareto-Huff competitive location models on networks. TOP 6:247–260

    Article  MathSciNet  Google Scholar 

  • ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2(1):30–42

    Article  Google Scholar 

  • Serra D, Colomé R (2001) Consumer choice and optimal locations models: formulations and heuristics. Pap Reg Sci 80(4):439–464

    Article  Google Scholar 

  • Sinnott RW (1984) Virtues of the haversine. Sky Telescope 68:159

    Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2:221–248

    Article  Google Scholar 

  • Suárez-Vega R, Santos-Penate DR, Dorta-Gonzalez P (2004) Discretization and resolution of the (\(r|{X}_p\))-medianoid problem involving quality criteria. TOP 12(1):111–133

    Article  MathSciNet  Google Scholar 

  • Suárez-Vega R, Santos-Penate DR, Dorta-González P (2007) The follower location problem with attraction thresholds. Pap Reg Sci 86(1):123–137

    Article  Google Scholar 

  • von Thunen JH (1910) Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalokonomie. Verlag von Gustav Fischer, Jena

    Google Scholar 

  • Villegas JG, Palacios F, Medaglia AL (2006) Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann Oper Res 147(1):109–141

    Article  MathSciNet  Google Scholar 

  • Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E (2006) Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE international conference on evolutionary computation, pp 892–899

    Google Scholar 

Download references

Acknowledgements

This research has been supported by Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, Spain) under the research project 20817/PI/18. This article is based upon work from COST Action CA15140 “Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO)” supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Algirdas Lančinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lančinskas, A., Fernández, P., Pelegrín, B., Žilinskas, J. (2020). Discrete Competitive Facility Location by Ranking Candidate Locations. In: Dzemyda, G., Bernatavičienė, J., Kacprzyk, J. (eds) Data Science: New Issues, Challenges and Applications. Studies in Computational Intelligence, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-39250-5_8

Download citation

Publish with us

Policies and ethics