Abstract
The General Data Protection Regulation (GDPR) has entered into force in the European Union (EU) since 25 May 2018 in order to satisfy present difficulties related to private information protection. This regulation involves significant structural for companies, but also stricter requirements for personal data collection, management, and protection. In this context, companies need to create smart solutions to allow them to comply with the GDPR and build a feeling of confidence in order to map all their personal data. In these conditions, cognitive computing could be able to assist companies extract, protect and anonymize sensitive structured and unstructured data. Therefore, this article proposes a framework that can serve as an approach or guidance for companies that use cognitive computing methods to meet GDPR requirements. The goal of this work is to examine the smart system as a data processing and data protection solution to contribute to GDPR compliance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Storr, C., Storr, P.: Internet of things: right to data from a European perspective. In: Corrales, M., Fenwick, M., Forgó, N. (eds.) New Technology, Big Data and the Law. PLBI, pp. 65–96. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5038-1_4
Tikkinen-Piri, C., Rohunen, A., Markula, J.: EU general data protection regulation: changes and implications for personal data collecting companies. Comput. Law Secur. Rev. 34(1), 134–153 (2018)
Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7
Becker, J., Knackstedt, R., Braeuer, S., Heddier, M.: Integrating regulatory requirements into information systems design and implementation. In: 35th International Conference on Information Systems “Building a Better World Through Information Systems”, ICIS 2014 (2014)
Sedkaoui, S., Gottinger, H-W.: The internet, data analytics and big data Chap. 8. In: Gottinger, H.W. (eds.) Internet Economics: Models, Mechanisms and Management, pp. 144–166. eBook Bentham Science Publishers, Sharjah (2017)
Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work and Think. Houghton Mifflin Harcourt, Boston (2013)
Malatras, A., Aanchez, I., Beslay, L., et al.: Pan-European personal data breaches: mapping of current practices and recommendations to facilitate cooperation among data protection authorities. Comput. Law Secur. Rev. 33, 458–469 (2017)
Tankard, C.: What the GDPR means for businesses. Netw. Secur. 6, 5–8 (2016)
Auwermeulen, B.V.: How to attribute the right to data probability in the Europe: a comparative analysis of legislations. Comput. Law Secur. Rev. 33(1), 57–72 (2017)
Data Protection Working Party, Article 29: Opinion 8/2014 on the on Recent Developments on the Internet of Things, WP 223, 16 September 2014
Mitrou, L.: Data Protection, Artificial Intelligence and Cognitive Services: Is the general data protection regulation (GDPR) “artificial intelligence-proof”? (2019). https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2PdYu
Rizkallah, J.: The Big (Unstructured) Data Problem (2017). https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/#16ddb612493a
Sedkaoui, S.: Data Analytics and Big Data. ISTE-Wiley, London (2018)
General Data Protection Regulation (EU) (2016). http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
Robol, M., Salnitri, M., Giorgini, P.: Toward GDPR-compliant socio-technical systems: modeling language and reasoning framework. In: Poels, G., Gailly, F., Serral Asensio, E., Snoeck, M. (eds.) PoEM 2017. LNBIP, vol. 305, pp. 236–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70241-4_16
Schwartz, P., Solove, D.: Reconciling personal information in the United States and European Union. Calif. Law Rev. 102, 877–916 (2014)
Zerlang, J.: GDPR: a milestone in convergence for cybersecurity and compliance. Netw. Secur. 6, 8–11 (2017)
Earley, S.: Executive roundtable series: machine learning and cognitive computing. IT Prof. 17(4), 56–60 (2015)
TechTarget: Cognitive Computing (2017). http://whatis.techtarget.com/definition/cognitive-computing
Watson, H.: The cognitive decision-support generation. Bus. Intell. J. 22(2), 5–14 (2017)
Demirkan, H., Earley, S., Harmon, R.: Cognitive computing. IT professional 19(4), 16–20 (2017)
Hurwitz, J., Kaufman, M., Bowles, A.: Cognitive Computing and Big Data Analytics. Wiley, Hoboken (2015)
Coccoli, M., Maresca, P.: Adopting cognitive computing solutions in healthcare. J. e-Learn. Knowl. Soc. 14(1) (2018)
Williams, H.: IBM pushes cognitive computing & data-driven solutions ahead of GDPR (2017). https://www.cbronline.com/internet-of-things/cognitive-computing/ibm-pushes-cognitive-computing-data-driven-solutions-ahead-gdpr/
Gupta, S., Kumar, A.K., Baabdullah, A., Al-Khowaiter, W.A.A.: Big data with cognitive computing: a review for the future. Int. J. Inf. Manage. 42, 78–89 (2018)
Alert Logic Report: GDPR Compliance in the EU (2017). https://www.alertlogic.com/assets/industry-reports/EU_GDPR_Alert_Logic.pdf
Alert Logic Report: GDPR Compliance Report (2018). https://www.alertlogic.com/assets/industry-reports/2018_GDPR_Compliance_Report.pdf
Hoepman, J.-H.: Privacy design strategies. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 446–459. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-5_38
Angelopoulos, K., Diamantopoulou, V., Mouratidis, H., Pavlidis, M.: A metamodel for GDPR-based privacy level agreements. In: ER Forum/Demos (2017)
Furey, E., Blue, J.: Alexa, emotions, privacy and GDPR. In: Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI 2018), Belfast, UK (2018)
Gan, M.F., Chua, H.N., Wong, S.F.: Personal data protection act enforcement with PETs adoption: an exploratory study on employees’ working process change. In: Kim, K.J., Kim, H., Baek, N. (eds.) ICITS 2017. LNEE, vol. 450, pp. 193–202. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6454-8_25
Karie, N.-M., Kebande, V.-R., Venter, H.S.: Diverging deep learning cognitive computing techniques into cyber forensics. Forensic Sci. Int. Synerg. 1, 61–67 (2019)
DLA Piper Data Protection. https://www.dlapiperdataprotection.com/
Falagas, M.E., Pitsouni, E.I., Malietzis, G.A., Pappas, G.: Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 22(2), 338–342 (2008). Official Publication of the Federation of American Societies for Experimental Biology
EU Parliament: Home Page of EU GDPR (2017). https://www.eugdpr.org/
Cormack, A.: GDPR: What’s your justification? (2017). https://community.jisc.ac.uk/blogs/regulatory-developments/article/gdpr-whats-your-justification
Information Commissioner’s Office: Preparing for the General Data Protection Regulation (GDPR): 12 Steps to Take Now (2018). https://ico.org.uk/media/1624219/preparing-for-the-gdpr-12-steps.pdf
Data Protection Network: GDPR Data Retention Quick Guide (2017). https://www.dpnetwork.org.uk/gdpr-data-retention-guide/
Gantner, J., Demetz, L., Maier, R.: All you need is trust: an analysis of trust measures communicated by cloud providers. In: Debruyne, C., et al. (eds.) OTM 2015. LNCS, pp. 557–574. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26148-5_38
Sedkaoui, S., Khelfaoui, M.: Understand, develop and enhance the learning process with big data. Inf. Discov. Deliv. 47(1), 2–16 (2019)
Acknowledgement
This research was realized under the “Eugen Ionescu” fellowship program, supported by “Agence Universitaire de Francophonie” (AUF) in Romania. The AUF team played no role in the writing of this article, or the decision to submit it for MDIS 2019 conference.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
The authors declare no conflict of interest.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sedkaoui, S., Simian, D. (2020). Developed Framework Based on Cognitive Computing to Support Personal Data Protection Under the GDPR. In: Simian, D., Stoica, L. (eds) Modelling and Development of Intelligent Systems. MDIS 2019. Communications in Computer and Information Science, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39237-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-39237-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39236-9
Online ISBN: 978-3-030-39237-6
eBook Packages: Computer ScienceComputer Science (R0)