Skip to main content

Monitoring the Edges of a Graph Using Distances

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Abstract

We introduce a new graph-theoretic concept in the area of network monitoring. A set M of vertices of a graph G is a distance-edge-monitoring set if for every edge e of G, there is a vertex x of M and a vertex y of G such that e belongs to all shortest paths between x and y. We denote by \(\mathrm {dem}(G)\) the smallest size of such a set in G. The vertices of M represent distance probes in a network modeled by G; when the edge e fails, the distance from x to y increases, and thus we are able to detect the failure. It turns out that not only we can detect it, but we can even correctly locate the failing edge.

In this paper, we initiate the study of this new concept. We show that for a nontrivial connected graph G of order n, \(1\le \mathrm {dem}(G)\le n-1\) with \(\mathrm {dem}(G)=1\) if and only if G is a tree, and \(\mathrm {dem}(G)=n-1\) if and only if it is a complete graph. We compute the exact value of \(\mathrm {dem}\) for grids, hypercubes, and complete bipartite graphs.

Then, we relate \(\mathrm {dem}\) to other standard graph parameters. We show that \(\mathrm {dem}(G)\) is lower-bounded by the arboricity of the graph, and upper-bounded by its vertex cover number. It is also upper-bounded by five times its feedback edge set number.

Then, we show that determining \(\mathrm {dem}(G)\) for an input graph G is an NP-complete problem, even for apex graphs. There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard to compute an asymptotically better approximation, even for bipartite graphs of small diameter and for bipartite subcubic graphs. For such instances, the problem is also unlikely to be fixed parameter tractable when parameterized by the solution size.

This paper is dedicated to the memory of Mirka Miller, who sadly passed away in January 2016. This research was started when Mirka Miller and Joe Ryan visited Ralf Klasing at the LaBRI, University of Bordeaux, in April 2015.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58412-1

    Book  MATH  Google Scholar 

  2. Bampas, E., Bilò, D., Drovandi, G., Gualà, L., Klasing, R., Proietti, G.: Network verification via routing table queries. J. Comput. Syst. Sci. 81(1), 234–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  4. Bilò, D., Erlebach, T., Mihalák, M., Widmayer, P.: Discovery of network properties with all-shortest-paths queries. Theoret. Comput. Sci. 411(14–15), 1626–1637 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., et al.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dall’Asta, L., Alvarez-Hamelin, J.I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: theory and simulations. Theoret. Comput. Sci. 355(1), 6–24 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 624–633 (2014)

    Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  9. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: Proceedings of the 19th IEEE International Conference on Computer Communications, INFOCOM 2000, pp. 1371–1380 (2000)

    Google Scholar 

  12. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)

    MATH  Google Scholar 

  13. Hromkovič, J.: Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Texts in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05269-3

    Book  MATH  Google Scholar 

  14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl. Math. 251, 204–220 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geodetic problem in networks. Open Math. 15, 1225–1235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  18. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the ANR project HOSIGRA (ANR-17-CE40-0022), the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39), and the Programme IdEx Bordeaux – SysNum (ANR-10-IDEX-03-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Foucaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foucaud, F., Klasing, R., Miller, M., Ryan, J. (2020). Monitoring the Edges of a Graph Using Distances. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics