Skip to main content

The Impact of Implant Surface Characteristic and Genetics on Peri-implant Diseases

  • Chapter
  • First Online:
Risk Factors for Peri-implant Diseases
  • 493 Accesses

Abstract

Dental implant treatment is now a common therapy performed on a daily basis to replace edentulous areas with fixed partial dentures or to support removable prostheses options. Despite the high successful rate for dental implants, peri-implantitis have a mean prevalence of 22%. Many factors can be linked to the development of peri-implantitis, such as patients with a history of severe periodontitis, patients with poor plaque control, or no regular maintenance care after implant therapy. Other potential risk indicators such as smoking, diabetes, occlusal overload, titanium particles, bone compression necrosis, overheating, micro-motion and biocorrosion for peri-implantitis remain to be determined. Emerging research and data are also exploring the relationship between surface morphology as well as genetics to the development of peri-implant diseases. There is still insufficient evidence to support the definite influence from different implant surfaces on the peri-implant marginal bone loss. However, scientific and clinical observations showed that rougher implant surface had a tendency to have more breakdown (e.g., marginal bone loss) and retain plaque if the implant was exposed into the oral cavity compared to turned surface implant which is more resistance to the plaque adherence. Therefore, in patients with a history of periodontitis or less than ideal home care, a smooth collar or a turned surface implant may be preferred to prevent future plaque retention on the implant and minimize future tissue breakdown. When patients have normal or pristine bone with no bone loss or periodontitis history, any implant surface can be used in this scenario. For patients with soft bone or sites that have previously been augmented through sinus lifting or guided bone regeneration, clinicians should avoid minimally rough surface implants and select moderately rough or rough surface implants in order to improve early osseointegration.

The is very limited and weak evidence presented in the research filed to link genetic polymorphism and peri-implantitis prevalence or implant failure. One of the reasons for the studies to present minimal effect from the genetic component onto the development of the peri-implantitis is the confounding factor such as smoking or patient’s personal habits can mask the effect from the gene polymorphism. Another clinical consideration is that it is still unclear how the polymorphism is being expressed and what are the factors that might influence the expression. This area of research is pending better well controlled studies looking into the pure effect from the genetic component and the relationship between genetic polymorphism and peri-implantitis remain uncertain as of today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res. 2012;23(Suppl 6):22–38. https://doi.org/10.1111/j.1600-0501.2012.02546.x.

    Article  PubMed  Google Scholar 

  2. Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42(Suppl 16):S158–71. https://doi.org/10.1111/jcpe.12334.x.

    Article  PubMed  Google Scholar 

  3. Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89(Suppl 1):S313–8. https://doi.org/10.1002/JPER.17-0739.

    Article  PubMed  Google Scholar 

  4. Lindhe J, Meyle J, Group D of European Workshop on Periodontology. Peri-implant diseases: consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 2008;35(Suppl 8):282–5. https://doi.org/10.1111/j.1600-051X.2008.01283.x.

    Article  PubMed  Google Scholar 

  5. Monje A, Ravidà A, Wang HL, Helms JA, Brunski JB. Relationship between primary/mechanical and secondary/biological implant stability. Int J Oral Maxillofac Implants. 2019;34(Suppl):S7–S23. https://doi.org/10.11607/jomi.19suppl.g1.

    Article  PubMed  Google Scholar 

  6. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.

    PubMed  Google Scholar 

  7. Ogle OE. Implant surface material, design, and osseointegration. Dent Clin N Am. 2015;59:505–20. https://doi.org/10.1016/j.cden.2014.12.003.

    Article  PubMed  Google Scholar 

  8. Roehling S, Schlegel KA, Woelfler H, Gahlert M. Zirconia compared to titanium dental implants in preclinical studies-A systematic review and meta-analysis. Clin Oral Implants Res. 2019;30:365–95. https://doi.org/10.1111/clr.13425.

    Article  PubMed  Google Scholar 

  9. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res. 2007;18:481–8.

    Article  Google Scholar 

  10. Lang NP, Jepsen S, Working Group 4. Implant surfaces and design (Working Group 4). Clin Oral Implants Res. 2009;20(Suppl 4):228–31. https://doi.org/10.1111/j.1600-0501.2009.01771.x.

    Article  PubMed  Google Scholar 

  11. BrĂ¥nemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399–410.

    Article  Google Scholar 

  12. De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W, et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol. 2017;73:218–27. https://doi.org/10.1111/prd.12177.

    Article  Google Scholar 

  13. Lekholm U, Gröndahl K, Jemt T. Outcome of oral implant treatment in partially edentulous jaws followed 20 years in clinical function. Clin Implant Dent Relat Res. 2006;8:178–86.

    Article  Google Scholar 

  14. Chappuis V, Buser R, Brägger U, Bornstein MM, Salvi GE, Buser D. Long-term outcomes of dental implants with a titanium plasma-sprayed surface: a 20-year prospective case series study in partially edentulous patients. Clin Implant Dent Relat Res. 2013;15:780–90. https://doi.org/10.1111/cid.12056.

    Article  PubMed  Google Scholar 

  15. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res. 1995;6:24–30.

    Article  Google Scholar 

  16. Astrand P, Engquist B, Anzén B, Bergendal T, Hallman M, Karlsson U, et al. Nonsubmerged and submerged implants in the treatment of the partially edentulous maxilla. Clin Implant Dent Relat Res. 2002;4:115–27.

    Article  Google Scholar 

  17. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent. 1988;60(1):75–84.

    Article  Google Scholar 

  18. Lazzara RJ, Testori T, Trisi P, Porter SS, Weinstein RL. A human histologic analysis of osseotite and machined surfaces using implants with two opposing surfaces. Int J Periodontics Restorative Dent. 1999;19:117–29.

    PubMed  Google Scholar 

  19. Del Fabbro M, Rosano G, Taschieri S. Implant survival rates after maxillary sinus augmentation. Eur J Oral Sci. 2008;116:497–506. https://doi.org/10.1111/j.1600-0722.2008.00571.x.

    Article  PubMed  Google Scholar 

  20. Piattelli A, Cosci F, Scarano A, Trisi P. Localized chronic suppurative bone infections as a sequel of peri-implantitis in a hydroxyapatite-coated dental implant. Biomaterials. 1995;16:917–20.

    Article  Google Scholar 

  21. Fretwurst T, Nelson K, Tarnow DP, Wang HL, Giannobile WV. Is metal particle release associated with peri-implant bone destruction? An emerging concept. J Dent Res. 2018;97:259–65. https://doi.org/10.1177/0022034517740560.

    Article  PubMed  Google Scholar 

  22. Renvert S, Polyzois I, Claffey N. How do implant surface characteristics influence peri-implant disease? J Clin Periodontol. 2011;38(Suppl 11):214–22. https://doi.org/10.1111/j.1600-051X.2010.01661.x.

    Article  PubMed  Google Scholar 

  23. Tillmanns HW, Hermann JS, Cagna DR, Burgess AV, Meffert RM. Evaluation of three different dental implants in ligature-induced peri-implantitis in the beagle dog. Part I. Clinical evaluation. Int J Oral Maxillofac Implants. 1997;12:611–20.

    PubMed  Google Scholar 

  24. Tillmanns HW, Hermann JS, Tiffee JC, Burgess AV, Meffert RM. Evaluation of three different dental implants in ligature-induced peri-implantitis in the beagle dog. Part II. Histology and microbiology. Int J Oral Maxillofac Implants. 1998;13:59–68.

    PubMed  Google Scholar 

  25. Martines RT, Sendyk WR, Gromatzky A, Cury PR. Sandblasted/acid-etched vs smooth-surface implants: implant clinical reaction to experimentally induced peri-implantitis in Beagle dogs. J Oral Implantol. 2008;34:185–9. https://doi.org/10.1563/0.880.1.

    Article  PubMed  Google Scholar 

  26. Shibli JA, Martins MC, Lotufo RF, Marcantonio E Jr. Microbiologic and radiographic analysis of ligature-induced peri-implantitis with different dental implant surfaces. Int J Oral Maxillofac Implants. 2003;18:383–90.

    PubMed  Google Scholar 

  27. Martins MC, Abi-Rached RS, Shibli JA, Araujo MW, Marcantonio E Jr. Experimental peri-implant tissue breakdown around different dental implant surfaces: clinical and radiographic evaluation in dogs. Int J Oral Maxillofac Implants. 2004;19:839–48.

    PubMed  Google Scholar 

  28. Rodriguez JC, Koticha T, Eubanks DL, Rudek I, Molz FJ, Chiavaccini L, et al. Influence of microtextured implant surfaces on peri-implantitis and its treatment: a preclinical trial. Int J Oral Maxillofac Implants. 2018;33:51–7. https://doi.org/10.11607/jomi.5599.

    Article  PubMed  Google Scholar 

  29. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implants Res. 2007;18:655–61.

    Article  Google Scholar 

  30. Albouy JP, Abrahamsson I, Persson LG, Berglundh T. Spontaneous progression of peri-implantitis at different types of implants. An experimental study in dogs. I: Clinical and radiographic observations. Clin Oral Implants Rest. 2008;19:997–1002. https://doi.org/10.1111/j.1600-0501.2008.01589.x.

    Article  Google Scholar 

  31. Albouy JP, Abrahamsson I, Persson LG, Berglundh T. Spontaneous progression of ligatured induced peri-implantitis at implants with different surface characteristics. An experimental study in dogs II: histological observations. Clin Oral Implants Res. 2009;20:366–71.

    Article  Google Scholar 

  32. Albouy JP, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2012;39:182–7. https://doi.org/10.1111/j.1600-051X.2011.01820.x.

    Article  PubMed  Google Scholar 

  33. Fickl S, Kebschull M, Calvo-Guirado JL, HĂ¼rzeler M, Zuhr O. Experimental peri-implantitis around different types of implants - A clinical and radiographic study in dogs. Clin Implant Dent Relat Res. 2015;17(Suppl 2):e661–9.

    Article  Google Scholar 

  34. Abrahamsson I, Berglundh T, Lindhe J. Soft tissue response to plaque formation at different implant systems. A comparative study in the dog. Clin Oral Implants Res. 1998;9:73–9. Erratum in: Clin Oral Implants Res 1998;9:281

    Article  Google Scholar 

  35. Jordana F, Susbielles L, Colat-Parros J. Periimplantitis and implant body roughness: a systematic review of literature. Implant Dent. 2018;27:672–81. https://doi.org/10.1097/ID.0000000000000834.

    Article  PubMed  Google Scholar 

  36. Monje A, Galindo-Moreno P, TözĂ¼m TF, SuĂ¡rez-LĂ³pez del Amo F, Wang HL. Into the paradigm of local factors as contributors for peri-implant disease: short communication. Int J Oral Maxillofac Implants. 2016;31:288–92. https://doi.org/10.11607/jomi.4265.

    Article  PubMed  Google Scholar 

  37. Doornewaard R, Christiaens V, De Bruyn H, Jacobsson M, Cosyn J, Vervaeke S, Jacquet W. Long-term effect of surface roughness and patients’ factors on crestal bone loss at dental implants. a systematic review and meta-analysis. Clin Implant Dent Relat Res. 2017;19:372–99. https://doi.org/10.1111/cid.12457.

    Article  PubMed  Google Scholar 

  38. Heitz-Mayfield LJ, Huynh-Ba G. History of treated periodontitis and smoking as risks for implant therapy. Int J Oral Maxillofac Implants. 2009;24(Suppl):39–68.

    PubMed  Google Scholar 

  39. Wennerberg A, Albrektsson T, Chrcanovic B. Long-term clinical outcome of implants with different surface modifications. Eur J Oral Implantol. 2018;11(Suppl 1):S123–36.

    PubMed  Google Scholar 

  40. Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, et al. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol. 1997;24:72–7.

    Article  Google Scholar 

  41. Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol. 1997;14:9–11.

    Article  Google Scholar 

  42. Hiyari S, Naghibi A, Wong R, Sadreshkevary R, Yi-Ling L, Tetradis S, et al. Susceptibility of different mouse strains to peri-implantitis. J Periodontal Res. 2018;53:107–16. https://doi.org/10.1111/jre.12493.

    Article  PubMed  Google Scholar 

  43. Mori G, Sasaki H, Makabe Y, Yoshinari M, Yajima Y. The genes Scgb1a1, Lpo and Gbp2 characteristically expressed in peri-implant epithelium of rats. Clin Oral Implants Res. 2016;27:e190–8. https://doi.org/10.1111/clr.12601.

    Article  PubMed  Google Scholar 

  44. Justiz Vaillant AA, Qurie A. Interleukin. [Updated 2019 Jun 12]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2019. https://www.ncbi.nlm.nih.gov/books/NBK499840/.

    Google Scholar 

  45. Wilson TG Jr, Nunn M. The relationship between the interleukin-1 periodontal genotype and implant loss. Initial data. J Periodontol. 1999;70:724–9.

    Article  Google Scholar 

  46. Kao RT, Curtis DA, Richards DW, Preble J. Increased interleukin-1 beta in the crevicular fluid of diseased implants. Int J Oral Maxillofac Implants. 1995;10:696–701.

    PubMed  Google Scholar 

  47. Renvert S, Widén C, Persson GR. Cytokine expression in peri-implant crevicular fluid in relation to bacterial presence. J Clin Periodontol. 2015;42:697–702. https://doi.org/10.1111/jcpe.12422.

    Article  PubMed  Google Scholar 

  48. Feloutzis A, Lang NP, Tonetti MS, BĂ¼rgin W, Brägger U, Buser D, Duff GW, Kornman KS. IL-1 gene polymorphism and smoking as risk factors for peri-implant bone loss in a well-maintained population. Clin Oral Implants Res. 2003;14:10–7.

    Article  Google Scholar 

  49. Gruica B, Wang HY, Lang NP, Buser D. Impact of IL-1 genotype and smoking status on the prognosis of osseointegrated implants. Clin Oral Implants Res. 2004;15:393–400.

    Article  Google Scholar 

  50. Jansson H, Hamberg K, De Bruyn H, Bratthall G. Clinical consequences of IL-1 genotype on early implant failures in patients under periodontal maintenance. Clin Implant Dent Relat Res. 2005;7:51–9.

    Article  Google Scholar 

  51. Hamdy AA, Ebrahem MA. The effect of interleukin-1 allele 2 genotype (IL-1a(−889) and IL-1b(+3954)) on the individual’s susceptibility to peri-implantitis: case-control study. J Oral Implantol. 2011 Jun;37(3):325–34. https://doi.org/10.1563/AAID-JOI-D-09-00117.1.

    Article  PubMed  Google Scholar 

  52. Shimpuku H, Nosaka Y, Kawamura T, Tachi Y, Shinohara M, Ohura K. Genetic polymorphisms of the interleukin-1 gene and early marginal bone loss around endosseous dental implants. Clin Oral Implants Res. 2003;14:423–9.

    Article  Google Scholar 

  53. Laine ML, Leonhardt A, Roos-JansĂ¥ker AM, Peña AS, van Winkelhoff AJ, Winkel EG, Renvert S. IL-1RN gene polymorphism is associated with peri-implantitis. Clin Oral Implants Res. 2006;17:380–5.

    Article  Google Scholar 

  54. Melo RF, Lopes BM, Shibli JA, Marcantonio E Jr, Marcantonio RA, Galli GM. Interleukin-1β and interleukin-6 expression and gene polymorphisms in subjects with peri-implant disease. Clin Implant Dent Relat Res. 2012;14:905–14. https://doi.org/10.1111/j.1708-8208.2010.00325.x.

    Article  PubMed  Google Scholar 

  55. Nibali L, D’Aiuto F, Donos N, Griffiths GS, Parkar M, Tonetti MS, Humphries SE, Brett PM. Association between periodontitis and common variants in the promoter of the interleukin-6 gene. Cytokine. 2009;45:50–4. https://doi.org/10.1016/j.cyto.2008.10.016.

    Article  PubMed  Google Scholar 

  56. Casado PL, Villas-Boas R, de Mello W, Duarte ME, Granjeiro JM. Peri-implant disease and chronic periodontitis: is interleukin-6 gene promoter polymorphism the common risk factor in a Brazilian population? Int J Oral Maxillofac Implants. 2013;28:35–43. https://doi.org/10.11607/jomi.2867.

    Article  PubMed  Google Scholar 

  57. Campos MI. Godoy dos Santos MC, Trevilatto PC, Scarel-Caminaga RM, Bezerra FJ, Line SR. Interleukin-2 and interleukin-6 gene promoter polymorphisms, and early failure of dental implants. Implant Dent. 2005;14:391–6.

    Article  Google Scholar 

  58. Ribeiro R, Melo R, Tortamano Neto P, Vajgel A, Souza PR, Cimões R. Polymorphisms of Il-10 (−1082) and RANKL (−438) Genes and the failure of dental implants. Int J Dent. 2017;2017:3901368. https://doi.org/10.1155/2017/3901368.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cury PR, Horewicz VV, Ferrari DS, Brito R Jr, Sendyk WR, Duarte PM, et al. Evaluation of the effect of tumor necrosis factor-alpha gene polymorphism on the risk of peri-implantitis: a case-control study. Int J Oral Maxillofac Implants. 2009;24:1101–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hom-Lay Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, SH., Wang, HL. (2020). The Impact of Implant Surface Characteristic and Genetics on Peri-implant Diseases. In: Ogata, Y. (eds) Risk Factors for Peri-implant Diseases  . Springer, Cham. https://doi.org/10.1007/978-3-030-39185-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39185-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39184-3

  • Online ISBN: 978-3-030-39185-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics