Skip to main content

Bioremediation of Pesticides in Soil Through Composting: Potential and Challenges

  • Chapter
  • First Online:
Biology of Composts

Abstract

Agriculture plays a major role in India’s socioeconomic fabric and pesticide use has become standard practice. The pesticides are primarily utilized for increased food production by controlling agricultural pests. Each year, 50 million tonnes of pesticides are consumed across India. However, only less than 0.1% of employed pesticide will effectively reach the target. The remaining pesticides are found to be tenacious in the environment having a half-life of 15–30 years. This residual pesticide causes toxic effects in the nontarget organisms by contaminating the soil, water, and air through several pathways such as runoff, sorption, photolysis, and leaching. The soil contamination is highly crucial because it is the part of many biological cycles and serves as a habitat for humans, flora, fauna, and other living organisms. Hence, it is of prime importance to mitigate or possibly eliminate pesticide concentration from the soil. Several physical, chemical, and biological techniques are available for removing pesticides. The physical and chemical techniques can separate, immobilize, and transform pesticides into a less toxic form. The use of physical and chemical techniques in agriculture is limited as it modifies the properties of soil and makes it unfit for crop production. Thus, an environmentally friendly and economically viable biological technique, viz. composting has gained importance for remediating pesticide-contaminated soils. The composting practice is one of the promising techniques, as it has high removal efficiency and yields useful end products. Although composting has several benefits the studies available in the Indian context are scarce. Hence to highlight the importance, this chapter reviews the present status of pesticide consumption in India, pesticide transport mechanism in the soil, its effect on human health, and case studies related to pesticide composting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh B, Srivastava P, Schaeffer A, Singh N (2013) Remediation of lindane by Jatropha curcas L: utilization of multipurpose species for rhizoremediation. Biomass Bioenergy 51:189–193

    Article  CAS  Google Scholar 

  • Agnihotri NP (1999) Pesticide: safety evaluation and monitoring. All India Coordinated Research Project on Pesticide Residues, Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Ali M, Gani KM, Kazmi AA, Ahmed N (2016) Degradation of aldrin and endosulfan in rotary drum and windrow composting. J Environ Sci Health B 51:278–286

    Article  CAS  PubMed  Google Scholar 

  • Atreya K (2007) Pesticide use in Nepal: understanding health costs from short-term exposure, South Asian Network for Development and Environmental Economics (SANDEE), Working Paper No 28-07. Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.924.8990&rep=rep1&type=pdf. Accessed 12 July 2018

  • Awasthi SK, Joshi R, Dhar H, Verma S, Awasthi MK, Varjani S, Sarsaiya S, Zhang Z, Kumar S (2018) Improving methane yield and quality via co-digestion of cow dung mixed with food waste. Bioresour Technol 251:259–263

    Article  CAS  PubMed  Google Scholar 

  • Azmi MA, Naqvi SNH (2011) Pesticide pollution, resistance and health hazards. In: Stoytcheva M (ed) Pesticides - the impacts of pesticide exposure. InTech, Rijeka, pp 1–24

    Google Scholar 

  • Bandala ER, Andres-Octaviano J, Pastrana P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures. J Environ Sci Health B 41:553–569

    Article  PubMed  CAS  Google Scholar 

  • Bezdicek D, Fauci M, Caldwell D, Finch R, Lang J (2001) Persistent herbicides in compost. Biocycle 42:25–30

    CAS  Google Scholar 

  • Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Bioremediation of an industrial effluent containing monocrotophos. Curr Microbiol 45:346–349

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj T, Sharma JP (2013) Impact of pesticides application in agricultural industry: an Indian scenario. Int J Agric Food Sci Technol 4:817–822

    Google Scholar 

  • Biggar JW, Seiber JN (1987) Fate of pesticides in the environment. Publication 3320 of the Agricultural Experiment Station, Division of Agriculture and Natural Resources. University of California, Oakland, CA

    Google Scholar 

  • Brusseau ML, Maier RM (2004) Soil and groundwater remediation. In: Environmental monitoring and characterization. Academic Press, Burlington, pp 335–356

    Chapter  Google Scholar 

  • Bustamante MA, Suárez-Estrella F, Torrecillas C, Paredes C, Moral R, Moreno J (2010) Use of chemometrics in the chemical and microbiological characterization of composts from agro-industrial wastes. Bioresour Technol 101:4068–4074

    Article  CAS  PubMed  Google Scholar 

  • Buyuksonmez F, Rynk R, Hess TF, Bechinski E (1999) Occurrence, degradation and fate of pesticides during composting. Part 1: Composting, pesticides, and pesticide degradation. Compost Sci Util 7:66–82

    Article  Google Scholar 

  • Buyuksonmez F, Rynk R, Hess TF, Bechinski E (2000) Occurrence, degradation and fate of pesticides during composting. Part II: Occurrence and fate of pesticides in compost and composting systems. Compost Sci Util 8:61–81

    Article  Google Scholar 

  • Castelo-Grande T, Augusto PA, Barbosa D (2005) Removal of pesticides from soil by supercritical extraction - a preliminary study. Chem Eng J 111:167–171

    Article  CAS  Google Scholar 

  • Castelo-Grande T, Augusto PA, Monteiro P, Estevez AM, Barbosa D (2010) Remediation of soils contaminated with pesticides: a review. Int J Environ Anal Chem 90:438–467

    Article  CAS  Google Scholar 

  • Chapman RA, Harris CR, Harris C (1986) Observations on the effect of soil type, treatment intensity, insecticide formulation, temperature and moisture on the adaptation and subsequent activity of biological agents associated with carbofuran degradation in soil. J Environ Sci Health B 21:125–141

    Article  Google Scholar 

  • Chauhan RS, Singhal L (2006) Harmful effects of pesticides and their control through cowpathy. Int J Cow Sci 2:61–70

    Google Scholar 

  • Chen F, Ying GG, Kong LX, Wang L, Zhao JL, Zhou LJ (2011) Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ Pollut 159:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755

    Article  CAS  PubMed  Google Scholar 

  • Creeger SM (1986) Considering pesticide potential for reaching ground water in the registration of pesticides. In: ACS Symposium Series, American Chemical Society, Washington, DC

    Google Scholar 

  • Cruz-González G, Julcour C, Chaumat H, Bourdon V, Ramon-Portugal F, Gaspard S, Jáuregui-Haza UJ, Delmas H (2018) Degradation of chlordecone and beta-hexachlorocyclohexane by photolysis, (photo-)fenton oxidation and ozonation. J Environ Sci Health B 53:121–125

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ruíz A, Cruz-Ruíz E, Vaca R, Del Águila P, Lugo J (2015) Effects of pumice mining on soil quality. Solid Earth Discuss 7:1375–1398

    Article  Google Scholar 

  • Delgado-Moreno L, Nogales R, Romero E (2017) Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using olive-oil agroindustry wastes. J Environ Manag 204:160–169

    Article  CAS  Google Scholar 

  • Deng S, Chen Y, Wang D, Shi T, Wu X, Ma X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24

    Article  CAS  PubMed  Google Scholar 

  • Devi IP (2009) Pesticide use and crop productivity in food crops of Kerala. Research Project Report, Kerala State Council for Science, Technology and Environment, Government of Kerala

    Google Scholar 

  • Dijkgraaf E, Vollebergh HRJ (2004) Burn or bury? A social cost comparison of final waste disposal methods. Ecol Econ 50:233–247

    Article  Google Scholar 

  • Dolfing J, Eekert M, Seech A, Vogan J, Mueller J (2007) In situ chemical reduction (ISCR) technologies: significance of low Eh reactions. Soil Sediment Contam Int J 17:63–74

    Article  CAS  Google Scholar 

  • Dos Santos EV, Sáez C, Martínez-Huitle CA, Cañizares P, Rodrigo MA (2015) Combined soil washing and CDEO for the removal of atrazine from soils. J Hazard Mater 300:129–134

    Article  CAS  PubMed  Google Scholar 

  • Drossman H, Johnson H, Mill T (1988) Structure activity relationships for environmental processes. 1: Hydrolysis of esters and carbamates. Chemosphere 17:1509–1530

    Article  Google Scholar 

  • El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to Collembola and ostracods. Chemosphere 92:131–137

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Oughton DH, Joner EJ (2013) Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil 368:189–200

    Article  CAS  Google Scholar 

  • Espinoza-Navarro O, Bustos-Obregón E (2005) Effect of malathion on the male reproductive organs of earthworms, Eisenia foetida. Asian J Androl 7:97–101

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agricultural Organization) (1975) Report of the first training course in crop Pest control with special reference to desert locust control and research, Dakar, Senegal, 17 Feb–21 Mar (progress report). Rome, Italy

    Google Scholar 

  • FAO/WHO (2000) Pesticide residues in food - 1999 evaluations. Part II—toxicological. Joint FAO/WHO Meeting on Pesticide Residues. World Health Organization, Geneva. Available from http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmpr/jmpr-rep/en/. Accessed 15 July 2018

  • FICCI Report (2015) Ushering in the 2nd Green Revolution – role of crop protection chemicals. Available from http://ficci.in/spdocument/20662/Agrochemicals-Knowledge-report.pdf. Accessed 23 July 2018

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64:434–441

    Article  CAS  Google Scholar 

  • Fumio M (1982) Degradation of pesticides in the environment by microorganisms and sunlight. In: Biodegradation of pesticides. Springer, New York, pp 67–87

    Google Scholar 

  • Gupta PK (2004) Pesticide exposure—Indian scene. Toxicology 198:83–90

    Article  CAS  PubMed  Google Scholar 

  • Gustavo YO, Wong-Villarreal A, Del P, Águila-Juárez JL, Fuente RVP (2016) Composting of soils polluted with pesticides: a microbial approach and methods for monitoring. JSM Environ Sci Ecol 4:1–9

    Google Scholar 

  • Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues–friend or foe of soil fertility? Soil Biol Biochem 84:1–14

    Article  CAS  Google Scholar 

  • IPEN (2006) Establishing the prevalence of POPs pesticide residues in water, soil and vegetable samples and creating awareness about their ill-effects. International POPs Elimination Network. Janhit Foundation, India. Available from http://www.ipen.org. Accessed 25 July 2018

  • Jilani S (2013) Comparative assessment of growth and biodegradation potential of soil isolate in the presence of pesticides. Saudi J Biol Sci 20:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karunakaran CO (1958) The Kerala food poisoning. J Ind Med Assoc 31:204–205

    CAS  Google Scholar 

  • Kenneth DR (1990) Pesticides in the soil microbial ecosystem. In: ACS Symposium Series, American Chemical Society, Washington, DC

    Google Scholar 

  • Kerle EA, Jenkins JJ, Vogue PA (1994) Understanding pesticide persistence and mobility for groundwater and surface water protection. Available from https://passel.unl.edu/Image/Robles%20VazquezWilfredo1129928587/EFATE_general.pdf. Accessed 20 Aug 2018

  • Koustas RN, Fischer D (1998) Review of separation technologies for treating pesticide-contaminated soil. J Air Waste Manag Assoc 48:434–440

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Kumar S, Mishra M, Prakash D, Singh SK, Sharma CS (2012) Persistent chlorinated pesticide residues in selected market vegetables of root and leaf origin. Asian J Plant Sci Res 2:232–236

    CAS  Google Scholar 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-Chuken UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28:190–208

    Article  Google Scholar 

  • Lal R (1984) Insecticide microbiology. Springer, Berlin

    Book  Google Scholar 

  • Lalander C, Senecal J, Gros Calvo M, Ahrens L, Josefsson S, Wiberg K, Vinnerås B (2016) Fate of pharmaceuticals and pesticides in fly larvae composting. Sci Total Environ 565:279–286

    Article  CAS  PubMed  Google Scholar 

  • Lemmon CR, Pylypiw HM (1992) Degradation of diazinon, chlorpyrifos, isofenphos, and pendimethalin in grass and compost. Bull Environ Contam Toxicol 48:409–415

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Cross WH, Chian ESK, Lai JS, Giabbai M, Hung CH (1996) Stabilization and solidification of lead in contaminated soils. J Hazard Mater 48:95–110

    Article  CAS  Google Scholar 

  • Lizano-Fallas V, Masís-Mora M, Espinoza-Villalobos D, Lizano-Brenes M, Rodríguez-Rodríguez CE (2017) Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. Chemosphere 182:106–113

    Article  CAS  PubMed  Google Scholar 

  • Lopes AR, Danko AS, Manaia CM, Nunes OC (2013) Molinate biodegradation in soils: natural attenuation versus bioaugmentation. Appl Microbiol Biotechnol 97:2691–2700

    Article  CAS  PubMed  Google Scholar 

  • López-González JA, Suárez-Estrella F, Vargas-García MC, López MJ, Jurado MM, Moreno J (2015) Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour Technol 175:406–416

    Article  PubMed  CAS  Google Scholar 

  • López-Vizcaíno R, Alonso J, Cañizare P, León MJ, Navarr V, Rodrigo MA, Sáez C (2014) Removal of phenanthrene from synthetic kaolin soils by eletrokinetic soil flushing. Sep Purif Technol 132:33–40

    Article  CAS  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Plant, soil and microbes. Springer, New York, pp 253–269

    Chapter  Google Scholar 

  • Martinez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martinez MJ, Gutiérrez Suárez A, Río Andrade JCD (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    CAS  PubMed  Google Scholar 

  • McEwen FL, Stephenson GR (1979) The use and significance of pesticides in the environment. Wiley, New York

    Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ministry of Agriculture & Farmers Welfare Statistical Database, Government of India. Available from http://ppqs.gov.in/statistical-database. Accessed 9 Oct 2018

  • Mohamed AT, Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 109:274–279

    Google Scholar 

  • Moorman TB, Cowan JK, Arthur EL, Coats JR (2001) Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol Fertil Soils 33:541–545

    Article  CAS  Google Scholar 

  • Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ 586:576–597

    Article  CAS  PubMed  Google Scholar 

  • Muller WP, Korte F (1976) Ecological chemical evaluation of waste treatment procedures. In: Environmental quality and safety: global aspects of chemistry, toxicology and technology as applied to the environment. Academic Press, New York, pp 215–236

    Google Scholar 

  • Nadia OF, Xiang LY, Lie LY, Anuar DC, Afandi MPM, Baharuddin SA (2015) Investigation of physico-chemical properties and microbial community during poultry manure co-composting process. J Environ Sci 28:81–94

    Article  CAS  Google Scholar 

  • Oerke EC, Dehne H, Schohnbeck F, Weber A (1995) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Pascal-Lorber S, Laurent F (2011) Phytoremediation techniques for pesticide contaminations. In: Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Springer, New York, pp 77–105

    Chapter  Google Scholar 

  • Paul D, Pandey G, Meier C, Roelof van der Meer J, Jain RK (2006) Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. Microbiol Ecol 57:116–127

    Article  CAS  Google Scholar 

  • Peshin R (2005) Evaluation of dissemination of insecticide resistance management technology in cotton crop in Punjab (PhD Dissertation). Punjab Agricultural University, Ludhiana, India

    Google Scholar 

  • Petruska JA, Mullins DE, Young RW, Collins ER Jr (1985) A benchtop system for evaluation of pesticide disposal by composting. Nucl Chem Waste Manag 5:177–182

    Article  CAS  Google Scholar 

  • Pimentel D, Levitan L (1986) Pesticides: amounts applied and amounts reaching pests. Bioscience 36:86–91

    Article  CAS  Google Scholar 

  • Pope JV, Skurky-Thomas M, Rosen CL (1994) Toxicity. Organochlor Pestic (New York Medscape) 259–278

    Google Scholar 

  • Pruss-Ustun A, Vickers C, Haefliger P, Bertollini R (2011) Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 10(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Puri SN, Murthy KS, Sharma OP (1998) Affordable basis and compatible tactics. Seminar on integrated pest management. Indian Crop Protection Association, India International Centre, New Delhi, 3rd April, 1998. Pestology (Special issue) 22:34–46

    Google Scholar 

  • Purnomo AS, Koyama F, Mori T, Kondo R (2010a) DDT degradation potential of cattle manure compost. Chemosphere 80:619–624

    Article  CAS  PubMed  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010b) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64:397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegrad 65:691–695

    Article  CAS  Google Scholar 

  • Racke KD, Frink CR (1989) Fate of organic contaminants during sewage sludge composting. Bull Environ Contam Toxicol 42:526–533

    Article  CAS  PubMed  Google Scholar 

  • Rani S, Sud D (2015) Role of enhanced solar radiation for degradation of triazophos pesticide in soil matrix. Sol Energy 120:494–504

    Article  CAS  Google Scholar 

  • Rao PSC, Mansell RS, Baldwin LB, Laurent MF (1992) Pesticides and their behaviour in soil and water. Long Island Horticulture News

    Google Scholar 

  • Rathfelder K, Lang JR, Abriola LM (1995) Soil vapor extraction and bioventing: applications, limitations, and future research directions. Rev Geophys 33:1067–1081

    Article  Google Scholar 

  • Risco C, López-Vizcaíno R, Sáez C, Yustres A, Cañizares P, Navarro V, Rodrigo MA (2016) Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: a case study in a pilot plant. Chem Eng J 285:128–136

    Article  CAS  Google Scholar 

  • Rodrigo MA, Oturan MA, Oturan N (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114:8720–8745

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo S, Saez C, Cañizares P, Rodrigo MA (2018) Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils. Sci Total Environ 640–641:629–636

    Article  PubMed  CAS  Google Scholar 

  • Satapanajaru T, Onanong S, Comfort SD, Snow DD, Cassada DA, Harris C (2009) Remediating dinoseb-contaminated soil with zerovalent iron. J Hazard Mater 168:930–937

    Article  CAS  PubMed  Google Scholar 

  • Sawhney BL, Brown K (1989) Reactions and movements of organic chemicals in soils. Soil Science Society of America, Madison, WI

    Book  Google Scholar 

  • Scelza R, Rao MA, Gianfreda L (2008) Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biol Biochem 40:2162–2169

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ Sci Technol 15:1360–1367

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Giger W, Hoehn E, Schneider JK (1983) Behavior of organic compounds during infiltration of river water to groundwater. Field studies. Environ Sci Technol 17:472–479

    Article  CAS  PubMed  Google Scholar 

  • Subash SP, Chand P, Pavithra S, Balaji SJ, Pal S (2017) Pesticide use in Indian agriculture: trends, market structure and policy issues (Policy brief, ICAR-National institute of agricultural economics and policy research). Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • SEEP (2010) Factors influencing the use of pesticides in cotton in India. Expert Panel on Social, Environmental and Economic Performance of Cotton Production, International Cotton Advisory Committee, Washington, DC

    Google Scholar 

  • Shea PJ, Machacek TA, Comfort SD (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ Pollut 132:183–188

    Article  CAS  PubMed  Google Scholar 

  • Shetty PK, Murugan M, Sreeja KG (2008) Crop protection stewardship in India: wanted or unwanted. Curr Sci:457–464

    Google Scholar 

  • Simpanen S, Yu D, Mäkelä R, Talvenmäki H, Sinkkonen A, Silvennoinen H, Romantschuk M (2017) Soil vapor extraction of wet gasoline-contaminated soil made possible by electroosmotic dewatering lab simulations applied at a field site. J Soils Sediments 1:1–7

    Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Sittler SP, Swinford GL, Gardner DG (1992) Use of thermal-enhanced soil vapor extraction to accelerate remediation of diesel-affected soils. In: Proceedings of Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, detection, and Restoration, Houston, TX

    Google Scholar 

  • Souza FL, Saez C, Llanos J, Lanza MRV, Cañizares P, Rodrigo MA (2016) Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochim Acta 190:371–377

    Article  CAS  Google Scholar 

  • Tinsley IJ (1979) Chemical concepts in pollutant behaviour. Wiley, New York

    Google Scholar 

  • Tortella GR, Rubilar O, Castillo MDP, Cea M, Mella-Herrera R, Diez MC (2012) Chlorpyrifos degradation in a biomixture of biobed at different maturity stages. Chemosphere 88:224–228

    Article  CAS  PubMed  Google Scholar 

  • Troxler WL, Goh SK, Dicks LWR (1993) Treatment of pesticide-contaminated soils with thermal desorption technologies. Air Waste 43:1610–1617

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Valo R, Salkinoja-Salonen M (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25:68–75

    Article  CAS  Google Scholar 

  • van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

  • Vandervoort C, Zabik MJ, Branham B, Lickfeldt DW (1997) Fate of selected pesticides applied to turfgrass: effect of composting on residues. Bull Environ Contam Toxicol 58:38–45

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ (2017a) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ (2017b) Remediation processes for petroleum oil polluted soil. Indian J Biotechnol 16:157–163

    CAS  Google Scholar 

  • Varjani SJ (2018) Bioremediation: a sustainable solution for complex environmental issues. In: Patel BN, Nagar R (eds) Sustainable development and India: convergence of law, economics, science, and politics. Oxford University Press, New Delhi, India, pp 104–115

    Chapter  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83

    Article  CAS  Google Scholar 

  • Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:116–124

    Article  CAS  Google Scholar 

  • Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Gnansounou E, Baskar G, Pant D, Zakaria ZA (2018a) Introduction to waste bioremediation. In: Varjani S, Gnansounou E, Gurunathan B, Pant D, Zakaria Z (eds) Waste bioremediation. Energy, environment, and sustainability. Springer, Singapore

    Chapter  Google Scholar 

  • Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (2018b) Introduction to environmental protection and management. In: Bioremediation: applications for environmental protection and management. Springer, New York, pp 1–6

    Google Scholar 

  • Varjani S, Kumar G, Rene ER (2019) Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manag 232:505–513

    Article  CAS  Google Scholar 

  • Vieira dos Santos E, Souza F, Saez C, Canizares P, Lanza MRV, Martinez-Huitle CA, Rodrigo MA (2016) Application of electrokinetic soil flushing to four herbicides: a comparison. Chemosphere 153:205–211

    Article  CAS  PubMed  Google Scholar 

  • Villa RD, Trovó AG, Nogueira R (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-fenton oxidation. J Hazard Mater 174:770–775

    Article  CAS  PubMed  Google Scholar 

  • Warsi F (2018) How do pesticides affect ecosystems. In: Pesticides. Available from http://farhanwarsi.tripod.com/id9.html. Accessed 14 Aug 2018

  • Wasim A, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields—a review. J Environ Qual 7:459–472

    Article  CAS  Google Scholar 

  • WHO/UNEP (1990) Public health impact of pesticides used in agriculture. World Health Organization, Geneva. Available from http://apps.who.int/iris/handle/10665/39772. Accessed 28 Aug 2018

  • Wolff MS, McConnell R, Cedillo L, Rivera M (1992) Dermal levels of methyl-parathion, organochlorine pesticides, and acetylcholinesterase among formulators. Bull Environ Contam Toxicol 48:671–678

    Article  CAS  PubMed  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighbouring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  PubMed  Google Scholar 

  • Yaron B (1978) Some aspects of surface interactions of clays with organophosphorus pesticides. Soil Sci 125:210–216

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Liu Z, Ni N, Chen Y, Gu C, Kengara FO, Li H, Jiang X (2014) Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J Environ Manag 141:161–168

    Article  CAS  Google Scholar 

  • Yu Z, Zeng GM, Chen YN, Zhang JC, Yu Y, Li H, Liu ZF, Tang L (2011) Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochem 46:1285–1291

    Article  CAS  Google Scholar 

  • Zeng G, Yu Z, Chen Y, Zhang J, Li H, Yu M, Zhao M (2011) Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour Technol 102:5905–5911

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varjani, S. et al. (2020). Bioremediation of Pesticides in Soil Through Composting: Potential and Challenges. In: Meghvansi, M., Varma, A. (eds) Biology of Composts. Soil Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-39173-7_11

Download citation

Publish with us

Policies and ethics