Skip to main content

Synchronization of Neural Ensembles in the Formation of Attention in the Brain

  • Conference paper
  • First Online:
  • 443 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1126))

Abstract

The method of studying the synchronization of relaxation self-oscillations, based on a modified axiomatic method and using the properties of uniform almost-periodic functions is used. A computational algorithm is used to study the synchronization of relaxation self-oscillations, using axiomatic algebraic models and properties of the theory of uniform almost periodic functions. It is shown that synchronization is a flexible and efficient process for shaping the attention of other cognitive processes to certain external informational influences. The five synchronization modes of neural ensembles of 100 peripheral neurons were investigated: asynchronous mode, full synchronization, partial synchronization, “incorrect” synchronization mode, transient phase-dynamic process. The complex synchronization regimes of relaxation self-oscillations are considered: “incorrect” synchronization, the presence of specific and “phase-dynamic” transient processes caused by the properties of uniform almost-periodic functions. Discussed the adequacy of the used mathematical computer model for the formation of attention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abarbanel, G.D.I., Rabinovich, M.I., Selverston, A.: Synchronization in neural ensembles. Successes phys. sci. 166(4), 363–390 (1996)

    Google Scholar 

  2. Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Luzyanina, T.B., Turova, T.S., Tsymbalyuk, G.S.: Oscillatory neural networks. Math. Results Appl. Mat. Simul. 4(1), 3–43 (1992)

    MATH  Google Scholar 

  3. Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Ivanitsky, G.R.: Modeling the dynamics of neural activity and information processing in the brain - the results of the “decade”. Successes Phys. Sci. 172(10), 1189–1214 (2002)

    Google Scholar 

  4. Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Ivanitsky, G.R.: UFN, 172: 10 (2002), 1189–11214; Phys. Usp., 45:10, 1073-1095 (2002)

    Article  Google Scholar 

  5. Vinogradova, O.S.: Hippocampus and memory. M: Science (1975)

    Google Scholar 

  6. Ivanitsky, G.R., Medvinsky, A.B., Tsyganov, M.A.: From the dynamics of population autowaves formed by living cells to neuroinformatics. Adv. Phys. Sci. 164(10), 1041–1072 (1994)

    Google Scholar 

  7. Kazanovich, Ya.B., Borisyuk, R.M.: Synchronization in the neural network of phase oscillators with the central element. Math. Model. 6(8), 45–60 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Kazanovich, Ya.B.: The theory of temporal correlation and segmentation models of visual information in the brain. Math. Biol. Bioinform. 5(1), 43–97 (2010)

    Article  Google Scholar 

  9. Kazanovich, Ya.B.: Oscillatory neural network models of cognitive functions of the brain. Thesis for the degree of Dr.Sc. Pushchino, p. 463 (2018)

    Google Scholar 

  10. Saleh, B.J., Qasim al-Aqbi, A.T., Falih Saedi, A.Y., Salman, L.: Comparative study of inspired algorithms for trajectory-following control in mobile robot. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 10(9), 1–10 (2018)

    Article  Google Scholar 

  11. Moshref, M., Al-Sayyad, R.: Developing ontology approach using software tool to improve data visualization (case study: computer network). Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(4), 32–39 (2019). https://doi.org/10.5815/ijmecs.2019.04.04

    Article  Google Scholar 

  12. Cheah, C.S., Leong, L.: Investigating the redundancy effect in the learning of C++ computer programming using screencasting. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(6), 19–25 (2019). https://doi.org/10.5815/ijmecs.2019.06.03

    Article  Google Scholar 

  13. Alvarez-Dionisi, L.E., Balza, M.M.R.: Teaching artificial intelligence and robotics to undergraduate systems engineering students. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(7), 54–63 (2019). https://doi.org/10.5815/ijmecs.2019.07.06

    Article  Google Scholar 

  14. Kuznetsov, A.P., Roman, Yu.P., Stankevich, N.V., Tyuryukina, L.V.: Pulse synchronization and synchronization in coupled systems: new aspects of the classical problem. Izv. Universities “PND”, vol. 16, № 3, pp. 88–111 (2008)

    Google Scholar 

  15. Kuznetsov, A.P., Seliverstova, E.S., Trubetskov, D.I., Tyuryukin, L.V.: The phenomenon of the van der Pol equation Izv. universities. “PND”, vol. 22, no. 4 (2014)

    Google Scholar 

  16. Kryukov, V.I.: The role of the hippocampus in long-term memory: a system-dynamic approach. J. High. Nerv. Act. 57(3), 261–278 (2007)

    Google Scholar 

  17. Nekorkin, V.I.: Nonlinear oscillations and waves in neurodynamics. Phys.-Uspekhi 178(3), 313–323 (2008). UFN

    Google Scholar 

  18. Mazurov, M.E.: Nonlinear synchronization and rhythmogenesis in electrically excitable heart systems. Thesis for the degree of Dr.Sc. Pushchino, p. 273 (2007)

    Google Scholar 

  19. Mazurov, M.E.: A geometric method for studying the solution of diophantine inequalities in problems of synchronizing relaxation oscillations. IVUZ. sir Maths. №7. C.13–20 (1989)

    Google Scholar 

  20. Mazurov, M.E.: Solution of diophantine inequalities in problems of the synchronization of relaxation oscillations. ZhVM MF AS USSR 31(11), 1619–1636 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Mazurov, M.E.: New periodic solutions of non-autonomous systems of nonlinear differential equations with a small parameter to derivatives and their stability. Dokl. Akad. Nauk SSSR 442(1), 33 (2012)

    Google Scholar 

  22. Mazurov, M.E.: Synchronization of relaxation self-oscillatory systems, synchronization in neural networks. Izv. RAN Phys. Ser. 82(1), 83–87 (2018)

    Google Scholar 

  23. Mishchenko, U.F., Rozov, N.Kh.: Differential equations with a small parameter and relaxation oscillations, p. 247 (1975). M.: Nauka

    Google Scholar 

  24. Pikovsky, A., Rosenblyum, M., Kurts, U.: Synchronization, a fundamental non-linear phenomenon, p. 508 (2003). M.: Technosphere

    Google Scholar 

  25. Khinchin, A.Ya.: Continued fractions, GIFML (1978). M.: “Science”

    Google Scholar 

  26. Chik, D., Borisyuk, R.M., Kazanovich, Ya.B.: Synchronization modes in the Hodgkin - Huxley neuron network with a central element. Math. Biol. Bioinform. 3(1), 16–35 (2008)

    Article  Google Scholar 

  27. Fitzpatrick, J.S., Akopian, G., Walsh, J.P.: Short-term plasticity at inhibitory synapses in rat striatum output. J. Neurophysiol. 85, 2088–2099 (2001)

    Article  Google Scholar 

  28. Fries, P., Schroeder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Correlation of stimulus selection. J. Neurosci. 22, 3739–3754 (2002)

    Article  Google Scholar 

  29. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  30. Fries, P., Schroeder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Correlation of stimulus selection. J. Neurosci. 22, 3739–3754 (2002)

    Article  Google Scholar 

  31. Gray, C.M., Konig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization. Nature 388, 334–337 (1989)

    Article  Google Scholar 

  32. Klein, R.: Inhibitory tagging system facilitates visual search. Nature 334, 430–431 (1988)

    Article  Google Scholar 

  33. Takeda, Y., Yagi, A.: Inhibitory tagging stimuli remain visible. Percept. Psychophys. 62, 927–934 (2000)

    Article  Google Scholar 

  34. Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Ann. Rev. Physiol. 64, 355–405 (2002)

    Google Scholar 

  35. Wiener, N., Rosenblueth, A.: The Arch. Inst. Cardiologia de Mexico. 205(16), 3–4 (1946)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mazurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazurov, M. (2020). Synchronization of Neural Ensembles in the Formation of Attention in the Brain. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39162-1_22

Download citation

Publish with us

Policies and ethics