Robust Operational-Space Motion Control of a Sitting-Type Lower Limb Rehabilitation Robot

  • Santhakumar Mohan
  • Jayant Kumar Mohanta
  • Laxmidhar Behera
  • Larisa Rybak
  • Dmitry MalyshevEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)


This paper presents a robust motion control of a sitting-type lower limb rehabilitation robot (LLRR) in its operational-space. The mathematical background of the proposed robot is discussed and its motion control design in the task-space based on a double-loop control approach is derived herein along with its closed-loop system stability analysis. The motion tracking performance analysis of the proposed scheme is demonstrated using computer based numerical simulations. For numerical simulations and to validate the effectiveness of the motion control strategy, the clinically obtained test gait data is used for the desired motion trajectory of the lower limb rehabilitation robot.


Limb rehabilitation Manipulator workspace Design of manipulators Parallel robot 



This work was supported by the Russian Science Foundation, the agreement number 19-19-00692.


  1. 1.
    Samorodskaya, I.V., Zayratyants, O.V., Perkhov, V.I., Andreev, E.M., Vaisman, D.Sh.: Trends in stroke mortality rates in Russia and the USA over a 15-year period. Arch. Pathol. 80(2), 30–37 (2018)Google Scholar
  2. 2.
    Early rehabilitation of patients after acute ischemic stroke. Science and healthcare, 2 (2014)Google Scholar
  3. 3.
    Vashisht, N., Puliyel, J.: Polio programme: let us declare victory and move on. Indian J. Med. Ethics 9(2), 114–117 (2012)Google Scholar
  4. 4.
    Truelsen, T., Bonita, R.: The worldwide burden of stroke: current status and future projections. In: Handbook of Clinical Neurology, 3rd edn, vol. 92, pp. 327–336 (2009)Google Scholar
  5. 5.
    Loeb, G.E.: Neural control of locomotion. BioSciences 39, 800–804 (1989)CrossRefGoogle Scholar
  6. 6.
    Stein, P.S.G., Stuart, D.G., Grillner, S., Selverston, A.I.: Neurons, Networks, and Motor Behavior. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Huang, G., et al.: Design and feasibility study of a leg-exoskeleton assistive wheel-chair robot with tests on gluteus medius muscles. Sensors 19(3), 548 (2019)CrossRefGoogle Scholar
  8. 8.
    Cafolla, D., Russo, M., Carbone, G.: CUBE, a cable-driven device for limb rehabilitation. J. Bionic Eng. 16, 492–502 (2019)CrossRefGoogle Scholar
  9. 9.
    Merlet, J., et al.: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries. Int. J. Robot. Res. 18(9), 902–916 (1999)CrossRefGoogle Scholar
  10. 10.
    Evtushenko, Y.: Numerical methods for finding global extreme (case of a non-uniform mesh). U.S.S.R. Comput. Maths. Math. Phys. 11, 1390–1403 (1971)CrossRefGoogle Scholar
  11. 11.
    Evtushenko, Y., Posypkin, M., Rybak, L., Turkin, A.: Approximating a solution set of non-linear inequalities. J. Global Optim. 7, 129–145 (2018)CrossRefGoogle Scholar
  12. 12.
    Evtushenko, Y., Posypkin, M., Turkin, A., Rybak, L.: The non-uniform covering approach to manipulator workspace assessment. In: Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, El-ConRus 2017, pp. 386–389 (2017)Google Scholar
  13. 13.
    Rybak, L.A., Posypkin, M.A., Turkin, A.V.: Method for approximating the workspace of the parallel robot. Int. J. Pharmacy Technol. 8(4), 25045–25055 (2016)Google Scholar
  14. 14.
    Joumah, A.A., Albitar, C.: Design optimization of 6-RUS parallel manipulator using hybrid algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 10(2), 83–95 (2018)Google Scholar
  15. 15.
    Mohammed, R.H., Elnaghi, B.E., Bendary, F.A., Elserfi, K.: Trajectory tracking control and robustness analysis of a robotic manipulator using advanced control techniques. Int. J. Eng. Manuf. (IJEM) 8(6), 42–54 (2018)CrossRefGoogle Scholar
  16. 16.
    Sahraoui, M., Khelfi, M.F., Salem, M.: Sequential adaptive fuzzy inference system based intelligent control of robot manipulators. Int. J. Intell. Syst. Appl. (IJISA) 6(11), 49–56 (2014)CrossRefGoogle Scholar
  17. 17.
    Colgate, J.E., Hogan, N.: Robust control of dynamically interacting systems. Int. J. Control 48(1), 65–88 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Stansfield, B.W., Hillman, S.J., Hazlewood, M.E., Robb, J.E.: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait Posture 23, 288–294 (2006)CrossRefGoogle Scholar
  19. 19.
    Jaulin, L.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Indian Institute of Technology PalakkadPalakkadIndia
  2. 2.Belgorod State Technological University named after V.G. ShukhovBelgorodRussian Federation
  3. 3.Indian Institute of Technology KanpurKanpurIndia

Personalised recommendations