Advertisement

Environmental Impact Assessment of Farming with Combined Methods of Life Cycle Assessment and Farm Carbon Calculator

  • Daizhong SuEmail author
  • Jonathan Smith
  • You Wu
  • Zhongming Ren
Chapter
  • 262 Downloads

Abstract

Nowadays, farming is one of the major sources of environmental impacts in the world. This research developed an approach of combining the life cycle assessment (LCA) and Farm Carbon Calculator (FCC) to assess the environmental impact of farming. The LCA is a general method covering a broad spectrum of environmental impact assessment and the FCC is a farming specific method focusing on carbon emission and sequestration. The approach is applied in an organic vegetable farm as an application scenario. In this chapter, the scope of the investigation is presented first, followed by assessing the environmental impact of farming by utilizing the LCA and FCC methods respectively. The assessments were conducted regarding key aspects of farming, including fuel/energy consumption, fertility improvement, materials, distribution, and waste/disposals. According to the assessment results, suggestions for reducing the environmental impact of farming are proposed. The outcome of the investigation proved the correctness and the compensative advantages of the approach.

Keywords

Life cycle impact assessment (LCIA) Carbon Greenhouse gas emissions Organic farming Environmental impact calculation Vegetable farm 

Abbreviations

FCC

Farm Carbon Calculator

GHGs

Greenhouse Gases

LCA

Life Cycle Assessment

LCIA

Life Cycle Impact Assessment

LCI

Life Cycle Inventory

SO

Scilly Organics

SOM

Soil Organic Matter

Notes

Acknowledgements

The authors acknowledge the financial supports received from the European Commission’s FP7 Environment programme for myEcoCost project (Grant number 308530) and H2020 Circular Economy program for CIRC4Life project (Grant agreement number 776503). The authors thank Dr Giuseppe Salvia, former research fellow working at the Advanced Design and Manufacturing Engineering Centre of Nottingham Trent University, for his contribution to the research reported in this article.

References

  1. Brentrup, F., Hoxha, A., & Christense, B. (2016). Carbon footprint analysis of mineral fertilizer production in Europe and other world regions, In Proceedings of the 10th International Conference on Life Cycle Assessment of Food, October 2016, University College Dublin, Dublin, Ireland.Google Scholar
  2. Curran, M. (2013). Life Cycle Assessment: A review of the methodology and its application to sustainability. Current Opinion in Chemical Engineering, 2, 1–5.CrossRefGoogle Scholar
  3. de Backer, E., Aertsens, J., Vergucht, S., & Steurbaut, W. (2009). Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA): A case study of leek production. British Food Journal, 111(10), 1028–1061.CrossRefGoogle Scholar
  4. Deimling, S., Shonfield P., & Bos U. (2008). LCA and carbon footprints in agro-food: From theory to implementation in the food industry. In Proceedings of the 6th International Conference on LCA in the Agri-Food Sector. Zurich, 12–14 Nov 2008.Google Scholar
  5. Defra. (2017). 2017 GHG conversion factors. Retrieved August 9, from https://www.greenstoneplus.com/blog/defra-2017-conversion-factors-whats-changed.
  6. Defra. (2009). Research project final report ‘A preliminary assessment of the greenhouse gases associated with growing media materials’. http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=15967.
  7. EN ISO 14040. (2006). Environmental management-Life cycle assessment-Principles and framework. International Organization for Standardization: Geneva, Switzerland.Google Scholar
  8. EN ISO 14044. (2006). Environmental management-Life cycle assessment-Requirements and guidelines. International Organization for Standardization: Geneva, Switzerland.Google Scholar
  9. European Commission, Joint Research Centre, Institute for Environment and Sustainability. (2010). International reference life cycle data system (ILCD) handbook–General guide for life cycle assessment–Detailed guidance. Luxembourg: Publications Office of the European Union.Google Scholar
  10. European Public Health and Agriculture Consortium (EPHAC) position on. (2011). The future of the common agricultural policy. Retrieved June 04, 2018, from http://eurohealthnet.eu/sites/eurohealthnet.eu/files/publications/EPHAC-Position-Paper.pdf.
  11. FAO. (2012). Road to Rio: Improving energy use key challenge for world’s food systems. Retrieved July 24, 2018, from www.fao.org/news/story/en/item/146971/icode.
  12. FCC. (n.d). Farm Carbon Calculator. Retrieved August 10, 2018, from http://farmcarbontoolkit.org.uk/carbon-calculator.
  13. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337.CrossRefGoogle Scholar
  14. Foster, C., Green, K., Bleda, M., Devick, P., Evans, B., Flynn A., et al. (2006). Environmental impacts of food production and consumption: A report to the department of environment, food and rural affairs.Google Scholar
  15. Frischknecht, R., Jungbluth, N., Althaus, H. J., Doka, G., Heck, T., Hellweg, S., et al. (2007). Overview and methodology. Ecoinvent report No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf.Google Scholar
  16. Galan, M. B., Peschard, D., & Boizard, H. (2007). ISO 14 001 at the farm level: Analysis of five methods for evaluating the environmental impact of agricultural practices. Journal of Environmental Management, 82(3), 341–352.Google Scholar
  17. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & van Zelm, R. (2009). ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. VROM–Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. www.lcia-recipe.net.
  18. Hammond, G., & Jones, C. (2011). Inventory of energy and carbon v2.0. University of Bath.Google Scholar
  19. Hokazono, S., & Hayashi, K. (2012). Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. Journal of Cleaner Production, 28, 101–112.Google Scholar
  20. Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M. D. M., et al. (2016). ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. RIVM Report 2016-0104. Bilthoven, The Netherlands. Retrieved September 3, 2018, from https://www.rivm.nl/en/Topics/L/Life_Cycle_Assessment_LCA/Downloads.
  21. Jeswani, H. K., Azapagic, A., Schepelmann, P., & Ritthoff, M. (2010). Options for broadening and deepening the LCA approaches. Journal of Cleaner Production, 18(2), 120–127.Google Scholar
  22. Knudsen, M. T., Meyer-Aurich, A., Olesen, J. E., Chirinda, N., & Hermansen, J. E. (2013). Carbon footprints of crops from organic and conventional arable crop rotations–using a life cycle assessment approach. Journal of Cleaner Production (in press).Google Scholar
  23. Lal, R. (2009). The potential for soil carbon sequestration. International Food and Policy Research Centre.Google Scholar
  24. Levasseur, A., Lesage, P., Margni, M., & Samson, R. (2012). Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. Journal of Industrial Ecology, 17(1), 117–128.Google Scholar
  25. Lillywhite, R., Chandler, D., Grant, W., Lewis, K., Firth, C., Schmutz, U., et al. (2007). Environmental Footprint and Sustainability of Horticulture (including Potatoes)–A Comparison with other Agricultural Sectors. Final report produced for the Department for Environment, Food and Rural Affairs (Defra) UK.Google Scholar
  26. Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M. T., Keyhani, A., et al. (2013). Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 54(1), 89–100.Google Scholar
  27. Mouron, P., et al. (2012). Sustainability assessment of crop protection systems: SustainOS methodology and its application for apple orchards. Agricultural Systems, 113, 1–15.CrossRefGoogle Scholar
  28. Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., & Chervet, A. (2011). Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agricultural Systems, 104(3), 233–245.Google Scholar
  29. Payraudeau, S., & van der Werf, H. M. G. (2005). Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems & Environment, 107(1), 1–19.CrossRefGoogle Scholar
  30. PRé. (2015). SimaPro database manual (pp. 1–78). Amersfoort, The Netherlands: PRé Consultants.Google Scholar
  31. Reganold, J. P., Glover, J. D., Andrews, P. K., & Hinman, H. R. (2001). Sustainability of three apple production systems. Nature, 410, 926–930.CrossRefGoogle Scholar
  32. Singh, B., Strømman, A. H., & Hertwich, E. G. (2012). Environmental damage assessment of carbon capture and storage. Journal of Industrial Ecology, 16(3), 407–419.CrossRefGoogle Scholar
  33. Smith, P., et al. (2008) Cool Farming. Report, Greenpeace.Google Scholar
  34. Soil Association. (2011). Carbon footprinting on farms. Information Sheet.Google Scholar
  35. Stichnothe, H., Hospido, A., & Azapagic, A. (2008). Carbon footprint estimation of food production systems: The importance of considering methane and nitrous oxide. Aspects of Applied Biology, 87, 65–75.Google Scholar
  36. Tidåker, P., Mattsson, B., & Jönsson, H. (2007). Environmental impact of wheat production using human urine and mineral fertilisers–A scenario study. Journal of Cleaner Production, 15(1), 52–62.CrossRefGoogle Scholar
  37. Virtanen, Y., Kurppa, S., Saarinen, M., Katajajuuri, J. M., Usva, K., Mäenpää, I., et al. (2011). Carbon footprint of food–approaches from national input–output statistics and a LCA of a food portion. Journal of Cleaner Production, 19(16), 1849–1856.CrossRefGoogle Scholar
  38. van der Werf, H. M. G., & Petit, J. (2002). Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agriculture, Ecosystems & Environment, 93(1–3), 131–145.CrossRefGoogle Scholar
  39. van Zeijts, H., Leneman, H., & Sleeswijk, A. W. (1999). Fitting fertilisation in LCA: Allocation to crops in a cropping plan. Journal of Cleaner Production, 7(1), 69–74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Daizhong Su
    • 1
    Email author
  • Jonathan Smith
    • 2
  • You Wu
    • 1
  • Zhongming Ren
    • 3
    • 4
  1. 1.Advanced Design and Manufacturing Engineering Centre, Nottingham Trent UniversityNottinghamUK
  2. 2.Jonathan Smith ConsultingGlasgowUK
  3. 3.School of Art and DesignShanghai University of Engineering ScienceShanghaiChina
  4. 4.Shanghai Institute of Design and InnovationTongji UniversityShanghaiChina

Personalised recommendations