Skip to main content

Analytical Solutions to the Coupled Boussinesq–Burgers Equations via Sine-Gordon Expansion Method

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1111)

Abstract

In the current study, we investigate the coupled Boussinesq-Burgers equations through sine-Gordon expansion method. BBEs arises in the research of fluid flow and describes the spreading of shallow water waves. A traveling wave transformation has been applied to turn the governing equation into a nonlinear ordinary differential equation. As a result, we produce some novel analytical solutions, such as topological, non-topological, and kink-type soliton solutions. Furthermore, 2D, 3D and contour surfaces are also plotted for all obtaining solutions.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ravi, L.K., Saharay, S., Sahoo, S.: New exact solutions of coupled Boussinesq-Burgers equations by Exp-function method. J. Ocean Eng. Sci. 2, 34–46 (2017)

    CrossRef  Google Scholar 

  2. Li, X., Li, B., Chen, J., Wang, M.: Exact solutions to the Boussinesq-Burgers equations. J. Appl. Math. Phys. 5, 1720–1724 (2017)

    CrossRef  Google Scholar 

  3. Wang, P., Tian, B., Liu, W.J., Lü, X., Jiang, Y.: Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves. Appl. Math. Comput. 218(5), 1726–1734 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Sulaiman, T.A., Bulut, H., Yokus, A., Baskonus, H.M.: On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. 93(5), 647–656 (2019)

    CrossRef  Google Scholar 

  5. Li, X., Chen, A.: Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation. Phys. Lett. A 342(5–6), 413–420 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Gupta, A.K., Ray, S.S.: Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq-Burger equations. Comput. Fluids 103, 34–41 (2014)

    CrossRef  MathSciNet  Google Scholar 

  7. Mohammed, K.: Exact traveling wave solutions of the Boussinesq-Burgers equation. Math. Comput. Model. 49, 666–671 (2009)

    CrossRef  MathSciNet  Google Scholar 

  8. Rady, A.A., Khalfallah, M.: On soliton solutions for Boussinesq-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 15(4), 886–894 (2010)

    CrossRef  MathSciNet  Google Scholar 

  9. Gao, L., Xu, W., Tang, Y., Meng, G.: New families of travelling wave solutions for Boussinesq-Burgers equation and (3+1)-dimensional Kadomtsev-Petviashvili equation. Phys. Lett. A 366(4–5), 411–421 (2007)

    CrossRef  MathSciNet  Google Scholar 

  10. Zheng-Yan, W., Ai-Hua, C.: Explicit solutions of Boussinesq-Burgers equation. Chin. Phys. 16(5), 1233 (2007)

    CrossRef  Google Scholar 

  11. Ilhan, O.A., Manafian, J., Shahriari, M.: Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation. Comput. Math. Appl. 78(8), 2429–2448 (2019)

    CrossRef  MathSciNet  Google Scholar 

  12. Ismael, H.F., Ali, K.K.: MHD Casson Flow Over an Unsteady Stretching Sheet 20(4), 533–541 (2017)

    Google Scholar 

  13. Baskonus, H.M.: Complex soliton solutions to the Gilson-Pickering model. Axioms 8(1), 1–14 (2019)

    CrossRef  MathSciNet  Google Scholar 

  14. Yousif, M.A., Mahmood, B.A., Ali, K.K., Ismael, H.F.: Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet. Int. J. Pure Appl. Math. 107(2), 289–300 (2016)

    CrossRef  Google Scholar 

  15. Ghanbari, B., Bekir, A., Saeed, R.K.: Oblique optical solutions of mitigating internet bottleneck with quadratic-cubic nonlinearity. Int. J. Modern Phys. B 33(20), 1950224 (2019)

    CrossRef  MathSciNet  Google Scholar 

  16. Ali, K.K., Varol, A.: Weissenberg and Williamson MHD flow over a stretching surface with thermal radiation and chemical reaction. JP J. Heat Mass Transf. 18(1), 15 (2019)

    CrossRef  Google Scholar 

  17. Sulaiman, T.A., Aktürk, T., Bulut, H., Baskonus, H.M.: Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation. J. Electromagn. Waves Appl. 32(9), 1093–1105 (2018)

    CrossRef  Google Scholar 

  18. Ali, K.K., Ismael, H.F., Mahmood, B.A., Yousif, M.A.: MHD casson fluid with heat transfer in a liquid film over unsteady stretching plate. Int. J. Adv. Appl. Sci. 4(1), 55–58 (2017)

    CrossRef  Google Scholar 

  19. Gao, W., Ismael, H.F., Bulut, H., Baskonus, H.M.: Instability modulation for the (2+ 1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab4a50

  20. Baskonus, H.M.: The sine-Gordon expansion method to the Davey–Stewartson equation with power-law nonlinearity. In: 1st International Symposium on Computational Mathematics and Engineering Sciences, Errichidia/Morocco (2016)

    Google Scholar 

  21. Baskonus, H.M., Bulut, H.: New wave behaviors of the system of equations for the ion sound and Langmuir waves. Waves Random Complex Media 26(4), 613–625 (2016)

    CrossRef  MathSciNet  Google Scholar 

  22. Baskonus, H.M., Bulut, H.: New complex exact travelling wave solutions for the generalized-Zakharov equation with complex structures. Int. J. Optim. Control Theor. Appl. (IJOCTA) 6(2), 141–150 (2016)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmina K. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, K.K., Yilmazer, R., Bulut, H. (2020). Analytical Solutions to the Coupled Boussinesq–Burgers Equations via Sine-Gordon Expansion Method. In: Dutta, H., Hammouch, Z., Bulut, H., Baskonus, H. (eds) 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019). CMES 2019. Advances in Intelligent Systems and Computing, vol 1111. Springer, Cham. https://doi.org/10.1007/978-3-030-39112-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39112-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39111-9

  • Online ISBN: 978-3-030-39112-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics