Skip to main content

On the Solitary Wave Solutions to the (2+1)-Dimensional Davey-Stewartson Equations

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1111)

Abstract

In this article, by using the Bernoulli sub-equation, we build the analytical traveling wave solution of the (2+1)-dimensional Davey-Stewartson equation system. First of all, the imaginary (2+1)-dimensional Davey-Stewatson system is transformed into a system of nonlinear differential equations, After getting the resultant equation, the homogeneous method of balance between the highest power and the highest derivative of the ordinary differential equation is authorized and finally the outcomes equations are solved in order to achieve some new analytical solutions. Wolfram Mathematica Package is used for different cases as well as for different values of constants to investigate the solutions of the resulting system of a nonlinear differential equation. The results of this study are shown in 2D and 3D dimensions graphically.

Keywords

  • Bernoulli sub-equation
  • Davey-Stewatson equations

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39112-6_11
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-39112-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Ilhan, O.A., Esen, A., Bulut, H., Baskonus, H.M.: Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.01.059

    CrossRef  Google Scholar 

  2. Aktürk, T., Gürefe, Y., Bulut, H.: New function method to the (n+1)-dimensional nonlinear problems. Int. J. Optim. Control Theor. Appl. (2017). https://doi.org/10.11121/ijocta.01.2017.00489

    CrossRef  Google Scholar 

  3. Kocak, Z. F., Bulut, H., Yel, G.: The solution of fractional wave equation by using modified trial equation method and homotopy analysis method. In AIP Conference Proceedings (2014)

    Google Scholar 

  4. Nofal, T.A.: An approximation of the analytical solution of the Jeffery-Hamel flow by homotopy analysis method. Appl. Math. Sci. 5(53), 2603–2615 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Sulaiman, T.A., Bulut, H., Yokus, A., Baskonus, H.M.: On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-018-1322-1

    CrossRef  Google Scholar 

  6. Yousif, M.A., Mahmood, B.A., Ali, K.K., Ismael, H.F.: Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet. Int. J. Pure Appl. Math. 107(2) (2016). https://doi.org/10.12732/ijpam.v107i2.1

  7. Yokus, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Numerical simulation and solutions of the two-component second order KdV evolutionarysystem. Numer. Methods Partial Differ. Equ. (2018). https://doi.org/10.1002/num.22192

    MATH  CrossRef  Google Scholar 

  8. Atangana, A., Ahmed, A., Oukouomi Noutchie, S.C.: On the Hamilton-Jacobi-Bellman equation by the homotopy perturbation method. Abstr. Appl. Anal. 2014, 8 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Bueno-Orovio, A., Pérez-García, V.M., Fenton, F.H.: Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J. Sci. Comput. 28(3), 886–900 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Bulut, H., Ergüt, M., Asil, V., Bokor, R.H.: Numerical solution of a viscous incompressible flow problem through an orifice by Adomian decomposition method. Appl. Math. Comput. 153(3), 733–741 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Ismael, H.F., Ali, K.K.: MHD casson flow over an unsteady stretching sheet. Adv. Appl. Fluid Mech. (2017). https://doi.org/10.17654/FM020040533

    CrossRef  Google Scholar 

  12. Owolabi, K.M., Atangana, A.: On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems. Chaos Interdiscip. J. Nonlinear Sci. 29(2), 23111 (2019)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Baskonus, H.M., Bulut, H.: On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math. (2015). https://doi.org/10.1515/math-2015-0052

  14. Ismael, H.F.: Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation. Int. J. Adv. Appl. Sci. J. 6(2), 81–86 (2017). https://doi.org/10.1371/journal.pone.0002559

    CrossRef  Google Scholar 

  15. Ali, K.K., Ismael, H.F., Mahmood, B.A., Yousif, M.A.: MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate. Int. J. Adv. Appl. Sci. 4(1), 55–58 (2017)

    CrossRef  Google Scholar 

  16. Ismael, H.F., Arifin, N.M.: Flow and heat transfer in a Maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation. JP J. Heat Mass Transf. 15(4) (2018). https://doi.org/10.17654/HM015040847

    CrossRef  Google Scholar 

  17. Zeeshan, A., Ismael, H.F., Yousif, M.A., Mahmood, T., Rahman, S.U.: Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium. J. Magn. 23(4), 491–498 (2018). https://doi.org/10.4283/JMAG.2018.23.4.491

    CrossRef  Google Scholar 

  18. Baskonus, H.M., Bulut, H., Sulaiman, T.A.: New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 141–150 (2019)

    MathSciNet  Google Scholar 

  19. Eskitaşçıoğlu, Eİ., Aktaş, M.B., Baskonus, H.M.: New complex and hyperbolic forms for Ablowitz-Kaup-Newell-Segur wave equation with fourth order. Appl. Math. Nonlinear Sci. 4(1), 105–112 (2019)

    MathSciNet  Google Scholar 

  20. Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fractals (2003). https://doi.org/10.1016/S0960-0779(02)00483-6

    MATH  CrossRef  Google Scholar 

  21. Hammouch, Z., Mekkaoui, T.: Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives. J. MESA 5(4), 489–498 (2014)

    MATH  Google Scholar 

  22. Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial differential equation arising in nonlinear physics. Open Phys. (2015). https://doi.org/10.1515/phys-2015-0035

  23. Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media (2016). https://doi.org/10.1080/17455030.2015.1132860

    MathSciNet  MATH  CrossRef  Google Scholar 

  24. Wei, G., Ismael, H.F., Bulut, H., Baskonus, H.M.: Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media. Phys. Scr. (2019). http://iopscience.iop.org/10.1088/1402-4896/ab4a50

  25. Ilhan, O.A., Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd–Bullough–Mikhailov equation. Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1187-3

    CrossRef  Google Scholar 

  26. Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: Solitons in an inhomogeneous Murnaghan’s rod. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12085-y

  27. Houwe, A., Hammouch, Z., Bienvenue, D., Nestor, S., Betchewe, G.: Nonlinear Schrödingers equations with cubic nonlinearity: M-derivative soliton solutions by \(\exp (-\varPhi (\xi )) \)-expansion method (2019)

    Google Scholar 

  28. Manafian, J., Aghdaei, M.F.: Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method. Eur. Phys. J. Plus (2016). https://doi.org/10.1140/epjp/i2016-16097-3

    CrossRef  Google Scholar 

  29. Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12096-8

    CrossRef  Google Scholar 

  30. Khalique, C.M., Mhlanga, I.E.: Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation. Appl. Math. Nonlinear Sci. (2018). https://doi.org/10.21042/amns.2018.1.00018

    MathSciNet  CrossRef  Google Scholar 

  31. Aghdaei, M.F., Manafian, J.: Optical soliton wave solutions to the resonant davey-stewartson system. Opt. Quantum Electron. (2016). https://doi.org/10.1007/s11082-016-0681-0

    CrossRef  Google Scholar 

  32. Yang, X., Yang, Y., Cattani, C., Zhu, C.M.: A new technique for solving the 1-D Burgers equation. Therm. Sci. (2017). https://doi.org/10.2298/TSCI17S1129Y

    CrossRef  Google Scholar 

  33. Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion. Optik (Stuttg). (2018). https://doi.org/10.1016/j.ijleo.2018.02.086

    CrossRef  Google Scholar 

  34. Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-018-1406-3

  35. Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach. Optik (Stuttg). (2018). https://doi.org/10.1016/j.ijleo.2018.08.007

    CrossRef  Google Scholar 

  36. Ghanbari, B., Kuo, C.-K.: New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin-Bona-Mahony and (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019)

    CrossRef  Google Scholar 

  37. Ebadi, G., Biswas, A.: The \(G^{\prime }/G\) method and 1-soliton solution of the Davey-Stewartson equation. Math. Comput. Model. 53(5–6), 694–698 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  38. Zedan, H.A., Al Saedi, A.: Periodic and solitary wave solutions of the Davey-Stewartson equation. Appl. Math. Inf. Sci. 4(2), 253–260 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Besse, C., Mauser, N.J., Stimming, H.P.: Numerical study of the Davey-Stewartson system. ESAIM Math. Model. Numer. Anal. 38(6), 1035–1054 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  40. Ye, X.: On the fully discrete Davey-Stewartson system with self-consistent sources. Pacific J. Appl. Math. 7(3), 163 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Li, Z.-F., Ruan, H.-Y.: (2+1)-dimensional Davey-Stewartson II equation for a two-dimensional nonlinear monatomic lattice. Zeitschrift für Naturforsch. A 61(1–2), 45–52 (2006)

    CrossRef  Google Scholar 

  42. Baskonus, H.M.: New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics. Nonlinear Dyn. (2016). https://doi.org/10.1007/s11071-016-2880-4

    MathSciNet  CrossRef  Google Scholar 

  43. Abdelaziz, M.A.M., Moussa, A.E., Alrahal, D.M.: Exact solutions for the nonlinear (2+1)-dimensional Davey-Stewartson equation using the generalized \(({G^\prime }/{G})\)-expansion method. J. Math. Res. 6(2) (2014)

    Google Scholar 

  44. Gurefe, Y., Misirli, E., Pandir, Y., Sonmezoglu, A., Ekici, M.: New exact solutions of the Davey-Stewartson equation with power-law nonlinearity. Bull. Malaysian Math. Sci. Soc. 38(3), 1223–1234 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar 

  45. Cevikel, A.C., Bekir, A.: New solitons and periodic solutions for (2+1)-dimensional Davey-Stewartson equations. Chin. J. Phys. 51(1), 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  46. El-Kalaawy, O.H., Ibrahim, R.S.: Solitary wave solution of the two-dimensional regularized long-wave and Davey-Stewartson equations in fluids and plasmas. Appl. Math. 3(08), 833 (2012)

    CrossRef  Google Scholar 

  47. Baskonus, H.M., Bulut, H.: On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method. Waves Random Complex Media (2015). https://doi.org/10.1080/17455030.2015.1080392

    MathSciNet  MATH  CrossRef  Google Scholar 

  48. Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial differential equation arising in nonlinear physics. Open Phys. (2015).https://doi.org/10.1515/phys-2015-0035

  49. Anker, D., Freeman, N.C.: On the soliton solutions of the Davey-Stewartson equation for long waves. Proc. R. Soc. London Ser. A (1978). https://doi.org/10.1098/rspa.1978.0083

    MathSciNet  MATH  CrossRef  Google Scholar 

  50. Mirzazadeh, M.: Soliton solutions of Davey-Stewartson equation by trial equation method and ansatz approach. Nonlinear Dyn. 82(4), 1775–1780 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar F. Ismael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ismael, H.F., Bulut, H. (2020). On the Solitary Wave Solutions to the (2+1)-Dimensional Davey-Stewartson Equations. In: Dutta, H., Hammouch, Z., Bulut, H., Baskonus, H. (eds) 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019). CMES 2019. Advances in Intelligent Systems and Computing, vol 1111. Springer, Cham. https://doi.org/10.1007/978-3-030-39112-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39112-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39111-9

  • Online ISBN: 978-3-030-39112-6

  • eBook Packages: EngineeringEngineering (R0)