Skip to main content

10-Porphyrin Nanorings with Copper(II) and Zinc(II) Centres

  • Chapter
  • First Online:
Electronic Communication in Heterometallated Porphyrin Oligomers

Part of the book series: Springer Theses ((Springer Theses))

  • 269 Accesses

Abstract

The affinity of copper(II) porphyrins for pyridine ligands is extremely weak, but oligo-pyridine templates can be used to direct the synthesis of Cu-containing cyclic porphyrin oligomers when they also contain zinc porphyrins. Here we describe the synthesis of a heterometallated 10-porphyrin nanoring prepared from a Zn/Zn/Cu/Zn/Zn pentamer. The macrocycle has copper porphyrins at two specific positions across the diameter of the ring and zinc porphyrins at the other sites. The Zn/Zn/Cu/Zn/Zn linear porphyrin pentamer binds strongly to a penta-pyridyl template, despite the weakness of the Cu–N interaction, due to of the chelate cooperativity of the neighbouring Zn–N coordinations. The stabilities of a family of four linear porphyrin pentamer complexes were determined by UV-Vis-NIR titrations and analysed using a chemical double-mutant cycle. The results show that the binding energy of the copper centre to an axial pyridine ligand is −6.2 kJ mol−1 when the entropy cost of bringing together the two molecules has already been paid by pyridine-zinc interactions. The development of template-directed approaches in the synthesis of nanorings with combinations of different metals around the ring opens up many possibilities for controlling the photophysical behaviour of these supramolecular systems and for probing their conformations by EPR.

Parts of this chapter have been reproduced from:

Nanorings with copper(II) and zinc(II) centers: forcing copper porphyrins to bind axial ligands in heterometallated oligomers

J. Cremers, S. Richert, D. V. Kondratuk, T. D. W. Claridge, C. R. Timmel, H. L. Anderson, Chem. Sci. 2016, 7, 6961–6968 (Published by The Royal Society of Chemistry. License type CC BY 3.0. https://pubs.rsc.org/en/content/articlelanding/2016/sc/c6sc01809b).

Exploring template-bound dinuclear copper porphyrin nanorings by EPR spectroscopy

S. Richert, J. Cremers, H. L. Anderson, C. R. Timmel, Chem. Sci. 2016, 7, 6952–6960 (Published by The Royal Society of Chemistry. License type CC BY-NC 3.0. https://pubs.rsc.org/en/content/articlelanding/2016/sc/c6sc01810f).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chichak KS, Cantrill SJ, Pease AR, Chiu S-H, Cave GWV, Atwood JL, Stoddart JF (2004) Molecular borromean rings. Science 304:1308

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki K, Sato S, Fujita M (2010) Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. Nat Chem 2:25

    Article  CAS  PubMed  Google Scholar 

  3. Guo J, Mayers PC, Breault GA, Hunter CA (2010) Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat Chem 2:218

    Article  CAS  PubMed  Google Scholar 

  4. Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT (2011) Strategies and tactics for the metal‐directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew Chem Int Ed 50:9260

    Article  CAS  Google Scholar 

  5. Anderson S, Anderson HL, Sanders JKM (1993) Expanding roles for templates in synthesis. Acc Chem Res 26:469

    Article  CAS  Google Scholar 

  6. O’Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TD, Saywell A, Blunt MO, O’Shea JN, Beton PH, Malfois M, Anderson HL (2011) Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469:72

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Ambroise A, Yang SI, Diers JR, Seth J, Wack CR, Bocian DF, Holten D, Lindsey JS (1999) Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins. J Am Chem Soc 121:8927

    Article  CAS  Google Scholar 

  8. Rucareanu S, Schuwey A, Gossauer A (2006) One-step template-directed synthesis of a macrocyclic tetraarylporphyrin hexamer based on supramolecular interactions with a C3-symmetric tetraarylporphyrin trimer.  J Am Chem Soc 128:3396

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann M, Wilson CJ, Odell B, Anderson HL (2007) Template‐directed synthesis of a π‐conjugated porphyrin nanoring. Angew Chem Int Ed 46:3122

    Article  CAS  Google Scholar 

  10. Neuhaus P, Cnossen A, Gong JQ, Herz LM, Anderson HL (2015) A molecular nanotube with three‐dimensional π‐conjugation. Angew Chem Int Ed 54:7344

    Article  CAS  Google Scholar 

  11. Favereau L, Cnossen A, Kelber JB, Gong JQ, Oetterli RM, Cremers J, Herz LM, Anderson HL (2015) Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings. J Am Chem Soc 137:14256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rousseaux SAL, Gong JQ, Haver R, Odell B, Claridge TDW, Herz LM, Anderson HL (2015) Self-assembly of russian doll concentric porphyrin nanorings. J Am Chem Soc 137:12713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Gerven PCM, Elemans JAAW, Gerritsen JW, Speller S, Nolte RJM, Rowan AE (2005) Dynamic combinatorial olefin metathesis: templated synthesis of porphyrin boxes. Chem Commun 3535

    Google Scholar 

  14. Zhu B, Chen H, Lin W, Ye Y, Wu J, Li S (2014) Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis. J Am Chem Soc 136:15126

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Kondratuk DV, Rousseaux SAL, Gil-Ramírez G, O’Sullivan MC, Cremers J, Claridge TDW, Anderson HL (2015) Caterpillar track complexes in template‐directed synthesis and correlated molecular motion. Angew Chem Int Ed 54:5355

    Article  CAS  Google Scholar 

  16. Yong C-K, Parkinson P, Kondratuk DV, Chen W-H, Stannard A, Summerfield A, Sprafke JK, O’Sullivan MC, Beton PH, Anderson HL, Herz LM (2015) Ultrafast delocalization of excitation in synthetic light-harvesting nanorings. Chem Sci 6:181

    Article  CAS  PubMed  Google Scholar 

  17. Tait CE, Neuhaus P, Peeks MD, Anderson HL, Timmel CR (2015) Transient EPR reveals triplet state delocalization in a series of cyclic and linear π-conjugated porphyrin oligomers. J Am Chem Soc 137:8284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brun AM, Harriman A, Heitz V, Sauvage JP (1991) Charge transfer across oblique bisporphyrins: two-center photoactive molecules. J Am Chem Soc 113:8657

    Article  CAS  Google Scholar 

  19. Fortage J, Boixel J, Blart E, Hammarström L, Becker HC, Odobel F (2008) Single‐step electron transfer on the nanometer scale: ultra‐fast charge shift in strongly coupled zinc porphyrin–gold porphyrin dyads. Chem Eur J 14:3467

    Article  CAS  PubMed  Google Scholar 

  20. Harriman A, Heitz V, Sauvage JP (1993) Pathways for photoinduced electron transfer within a mixed-metal bisporphyrin. J Phys Chem 97:5940

    Article  CAS  Google Scholar 

  21. Brookfield RL, Ellul H, Harriman A (1985) Luminescence of porphyrins and metalloporphyrins. Part 10—mixed-metal dimers. J Chem Soc Faraday Trans 2(81):1837

    Article  Google Scholar 

  22. Borovkov VV, Lintuluoto JM, Inoue Y (1999) Synthesis of Zn‐, Mn‐, and Fe‐containing mono‐ and heterometallated ethanediyl‐bridged porphyrin dimers. Helv Chim Acta 82:919

    Article  CAS  Google Scholar 

  23. Asano-Someda M, van der Est A, Krüger U, Stehlik D, Kaizu Y, Levanon H (1999) Intramolecular energy transfer in a covalently linked copper(II) porphyrin−free base porphyrin dimer: novel spin polarization in the energy acceptor. J Phys Chem A 103:6704

    Article  CAS  Google Scholar 

  24. Fortage J, Scarpaci A, Viau L, Pellegrin Y, Blart E, Falkenström M, Hammarström L, Asselberghs I, Kellens R, Libaers W, Clays K, Eng MP, Odobel F (2009) Charge‐transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad. Chem Eur J 15:9058

    Article  CAS  PubMed  Google Scholar 

  25. Vidal-Ferran A, Bampos N, Sanders JKM (1997) Stepwise approach to bimetalic porphyrin hosts:  spatially enforced coordination of a nickel(II) porphyrin. Inorg Chem 36:6117

    Article  CAS  PubMed  Google Scholar 

  26. Webb SJ, Sanders JKM (2000) Synthesis and recognition properties of a ruthenium(II)−bis(zinc) cyclic porphyrin trimer. Inorg Chem 39:5912

    Article  CAS  PubMed  Google Scholar 

  27. Rucareanu S, Mongin O, Schuwey A, Hoyler N, Gossauer A, Amrein W, Hediger H-U (2001) Supramolecular assemblies between macrocyclic porphyrin hexamers and star-shaped porphyrin arrays. J Org Chem 66:4973

    Article  CAS  PubMed  Google Scholar 

  28. Kim D, Holten D, Gouterman M (1984) Evidence from picosecond transient absorption and kinetic studies of charge-transfer states in copper(II) porphyrins. J Am Chem Soc 106:2793

    Article  CAS  Google Scholar 

  29. Asano M, Kaizu Y, Kobayashi H (1988) The lowest excited states of copper porphyrins. J Chem Phys 89:6567

    Article  CAS  Google Scholar 

  30. Liu F, Cunningham KL, Uphues W, Fink GW, Schmolt J, McMillin DR (2015) Luminescence quenching of copper(II) porphyrins with lewis bases. Inorg Chem 1995:34

    Google Scholar 

  31. Szintay G, Horváth A (2001) Five-coordinate complex formation and luminescence quenching study of copper(II) porphyrins. Inorg Chim Acta 324:278

    Article  CAS  Google Scholar 

  32. Toyama N, Asano-Someda M, Ichino T, Kaizu Y (2000) Intramolecular energy transfer in a covalently linked copper(II) porphyrin−free base porphyrin dimer:  novel spin polarization in the energy acceptor. J Phys Chem A 104:4857

    Article  CAS  Google Scholar 

  33. Nguyen T, Hakansson P, Edge R, Collison D, Goodman BA, Burns JR, Stulz E (2014) EPR based distance measurement in Cu-porphyrin–DNA. New J Chem 38:5254

    Article  CAS  Google Scholar 

  34. Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chem Phys Chem 3:927

    Article  CAS  PubMed  Google Scholar 

  35. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. PCCP 9:1895

    Google Scholar 

  36. Bowen AM, Jones MW, Lovett JE, Gaule TG, McPherson MJ, Dilworth JR, Timmel CR, Harmer JR (2016) Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres. PCCP 18:5981

    Article  CAS  PubMed  Google Scholar 

  37. Becker JS, Saxena S (2005) Double quantum coherence electron spin resonance on coupled Cu(II)–Cu(II) electron spins. Chem Phys Lett 414:248

    Article  CAS  Google Scholar 

  38. Yang Z, Kise D, Saxena S (2010) An approach towards the measurement of nanometer range distances based on Cu2+ Ions and ESR. J Phys Chem B 114:6165

    Article  CAS  PubMed  Google Scholar 

  39. Richert S, Cremers J, Anderson HL, Timmel CR (2016) Exploring template-bound dinuclear copper porphyrin nanorings by EPR spectroscopy. Chem Sci 7:6952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Durot S, Taesch J, Heitz V (2014) Multiporphyrinic cages: architectures and functions. Chem Rev 114:8542

    Article  CAS  PubMed  Google Scholar 

  41. Miller JR, Dorough GD (1952) Pyridinate complexes of some metallo-derivatives of tetraphenylporphine and tetraphenylchlorin. J Am Chem Soc 74:3977

    Article  CAS  Google Scholar 

  42. Abraham RJ, Leighton P, Sanders JKM (1985) Coordination chemistry and geometries of some 4,4’-bipyridyl-capped porphyrins. Proton- and ligand-induced switching of conformations. J Am Chem Soc 107:3472

    Article  CAS  Google Scholar 

  43. Tabushi I, Kugimiya S, Kinnaird MG, Sasaki T (1985) Artificial allosteric system 2. Cooperative 1-methylimidazole binding to an artificial allosteric system, zinc-gable porphyrin-dipyridylmethane complex. J Am Chem Soc 107:4192

    Article  CAS  Google Scholar 

  44. Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109:1659

    Article  CAS  PubMed  Google Scholar 

  45. Hambright P (1967) Formation constants of some pyridine–metalloporphyrines. Chem Commun 470

    Google Scholar 

  46. Cockroft SL, Hunter CA (2007) Chemical double-mutant cycles: dissecting non-covalent interactions. Chem Soc Rev 36:172

    Article  CAS  PubMed  Google Scholar 

  47. Camara-Campos A, Musumeci D, Hunter CA, Turega S (2009) Chemical double mutant cycles for the quantification of cooperativity in H-bonded complexes. J Am Chem Soc 131:18518

    Article  CAS  PubMed  Google Scholar 

  48. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  49. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829

    Article  Google Scholar 

  50. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc 97:119

    Article  CAS  Google Scholar 

  51. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463

    Article  CAS  PubMed  Google Scholar 

  52. Grimme S (2006) Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem 27:1787

    Article  CAS  PubMed  Google Scholar 

  53. Lipstman S, Goldberg I (2010) Versatile molecular recognition features of tetra(3-pyridyl)porphyrin in crystal engineering. Cryst Growth Des 10:4596

    Article  CAS  Google Scholar 

  54. Renner MW, Barkigia KM, Fajer J (1997) Conformational landscapes of nonplanar porphyrins: superstructure, ligation, binding pockets and oxidation effects in Cu(II) porphyrins. Inorg Chim Acta 263:181

    Article  CAS  Google Scholar 

  55. Zimmer B, Hutin M, Bulach V, Hosseini MW, De Cian A, Kyritsakas N (2002) Coordination polymers based on porphyrin and copper: the influence of the crystallization solvents on the dimensionality of the network. New J Chem 26:1532

    Article  CAS  Google Scholar 

  56. Sprafke JK, Kondratuk DV, Wykes M, Thompson AL, Hoffmann M, Drevinskas R, Chen W-H, Yong CK, Kärnbratt J, Bullock JE, Malfois M, Wasielewski MR, Albinsson B, Herz LM, Zigmantas D, Beljonne D, Anderson HL (2011) Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. J Am Chem Soc 133:17262

    Article  CAS  PubMed  Google Scholar 

  57. Wagner RW, Johnson TE, Li F, Lindsey JS (1995) Synthesis of ethyne-linked or butadiyne-linked porphyrin arrays using mild, copper-free, Pd-mediated coupling reactions. J Org Chem 60:5266

    Article  CAS  Google Scholar 

  58. Sun H, Hunter CA, Llamas EM (2015) The flexibility–complementarity dichotomy in receptor–ligand interactions. Chem Sci 6:1444

    Article  CAS  PubMed  Google Scholar 

  59. Sun H, Hunter CA, Navarro C, Turega S (2013) Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds. J Am Chem Soc 135:13129

    Article  CAS  PubMed  Google Scholar 

  60. Hogben HJ, Sprafke JK, Hoffmann M, Pawlicki M, Anderson HL (2011) Stepwise effective molarities in porphyrin oligomer complexes: preorganization results in exceptionally strong chelate cooperativity. J Am Chem Soc 133:20962

    Article  CAS  PubMed  Google Scholar 

  61. Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310

    Article  CAS  Google Scholar 

  62. Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand‐induced reductions in motion within receptors and enzymes. Angew Chem Int Ed 43:6596

    Article  CAS  Google Scholar 

  63. Cole SJ, Curthoys GC, Magnusson EA, Phillips JN (1972) Ligand binding by metalloporphyrins III. Thermodynamic functions for the addition of substituted pyridines to nickel(II) and zinc(II) porphyrins. Inorg Chem 11:1024

    Article  CAS  Google Scholar 

  64. Vogel GC, Stahlbush JR (1977) Thermodynamic study of the adduct formation of zinc tetraphenylporphine with several neutral donors in cyclohexane. Inorg Chem 16:950

    Article  CAS  Google Scholar 

  65. Walker FA, Benson M (1980) Entropy, enthalpy, and side arm porphyrins 1. Thermodynamics of axial ligand competition between 3-picoline and a series of 3-pyridyl ligands covalently attached to zinc tetraphenylporphyrin. J Am Chem Soc 102:5530

    Article  CAS  Google Scholar 

  66. Hunter CA, Anderson HL (2009) What is cooperativity?. Angew Chem Int Ed 48:7488

    Article  CAS  Google Scholar 

  67. Ercolani G, Schiaffino L (2011) Allosteric, chelate, and interannular cooperativity: a mise au point. Angew Chem Int Ed 50:1762

    Article  CAS  Google Scholar 

  68. Taylor PN, Huuskonen J, Aplin RT, Anderson HL, Rumbles G, Williams E (1998) Conjugated porphyrin oligomers from monomer to hexamer. Chem Commun 909

    Google Scholar 

  69. Littler BJ, Miller MA, Hung C-H, Wagner RW, O’Shea DF, Boyle PD, Lindsey JS (1999) Refined synthesis of 5-substituted dipyrromethanes. J Org Chem 64:1391

    Article  CAS  Google Scholar 

  70. Taylor PN, Anderson HL (1999) Cooperative self-assembly of double-strand conjugated porphyrin ladders. J Am Chem Soc 121:11538

    Article  CAS  Google Scholar 

  71. Cremers J, Richert S, Kondratuk DV, Claridge TDW, Timmel CR, Anderson HL (2016) Nanorings with copper(II) and zinc(II) centers: forcing copper porphyrins to bind axial ligands in heterometallated oligomers. Chem Sci 7:6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benson SW (1958) Statistical factors in the correlation of rate constants and equilibrium constants. J Am Chem Soc 80:5151

    Article  CAS  Google Scholar 

  73. Ercolani G, Piguet C, Borkovec M, Hamacek J (2007) Symmetry numbers and statistical factors in self-assembly and multivalency. J Phys Chem B 111:12195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cremers .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cremers, J. (2020). 10-Porphyrin Nanorings with Copper(II) and Zinc(II) Centres. In: Electronic Communication in Heterometallated Porphyrin Oligomers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-39101-0_2

Download citation

Publish with us

Policies and ethics