Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 236 Accesses

Abstract

This thesis explores the design and synthesis of heterometallated oligo-porphyrin nanostructures and presents an investigation into the photophysical and electronic properties of this class of compounds. This introductory chapter presents a literature review of heterometallic porphyrin arrays, followed by an introduction to some of the techniques used to investigate the structures presented throughout this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willstätter R (1915) Chlorophyll. J Am Chem Soc 37:323

    Article  Google Scholar 

  2. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517

    Article  CAS  Google Scholar 

  3. Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P, Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48:55

    Article  CAS  PubMed  Google Scholar 

  4. Jimenez R, Dikshit SN, Bradforth SE, Fleming GR (1996) Electronic excitation transfer in the LH2 complex of rhodobacter sphaeroides. J Phys Chem 100:6825

    Article  CAS  Google Scholar 

  5. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem 239:2370

    CAS  PubMed  Google Scholar 

  6. Senge MO, Davis M (2010) Porphyrin (porphine)—a neglected parent compound with potential. JPP 14:557

    CAS  Google Scholar 

  7. Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331:445

    Article  CAS  PubMed  Google Scholar 

  8. Bowen AM, Jones MW, Lovett JE, Gaule TG, McPherson MJ, Dilworth JR, Timmel CR, Harmer JR (2016) Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres. PCCP 18:5981

    Article  CAS  PubMed  Google Scholar 

  9. Wang S-P, Shen Y-F, Zhu B-Y, Wu J, Li S (2016) Recent advances in the template-directed synthesis of porphyrin nanorings. Chem Commun 52:10205

    Article  CAS  Google Scholar 

  10. Anderson HL (1999) Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chem Commun 2323

    Google Scholar 

  11. Terazima M, Shimizu H, Osuka A (1997) The third-order nonlinear optical properties of porphyrin oligomers. J Appl Phys 81:2946

    Article  CAS  Google Scholar 

  12. Nakano A, Osuka A, Yamazaki I, Yamazaki T, Nishimura Y (1998) Windmill‐like porphyrin arrays as potent light‐harvesting antenna complexes. Angew Chem Int Ed 37:3023

    Article  CAS  Google Scholar 

  13. Osuka A, Tanabe N, Nakajima S, Maruyama K (1996) Synthesis of 1,4-phenylene-bridged linear porphyrin arrays. J Chem Soc Perkin Trans 2:199

    Article  Google Scholar 

  14. Wagner RW, Johnson TE, Lindsey JS (1996) Soluble synthetic multiporphyrin arrays 1. Modular design and synthesis. J Am Chem Soc 118:11166

    Article  CAS  Google Scholar 

  15. Seth J, Palaniappan V, Johnson TE, Prathapan S, Lindsey JS, Bocian DF (1994) Investigation of electronic communication in multi-porphyrin light-harvesting arrays. J Am Chem Soc 116:10578

    Article  CAS  Google Scholar 

  16. Arnold DP, Johnson AW, Mahendran MJ (1978) Some reactions of meso-formyloctaethylporhyrin. Chem Soc Perkin Trans 1:366

    Article  Google Scholar 

  17. Arnold DP, Nitschinsk LJ (1992) Porphyrin dimers linked by conjugated butadiynes. Tetrahedron 48:8781

    Article  CAS  Google Scholar 

  18. Arnold DP (2000) Two rings are better than one: adventures in porphyrin chemistry. Synlett 2000:296

    Article  Google Scholar 

  19. Anderson HL (1994) Conjugated porphyrin ladders. Inorg Chem 33:972

    Article  CAS  Google Scholar 

  20. Winters MU, Kärnbratt J, Eng M, Wilson CJ, Anderson HL, Albinsson B (2007) Photophysics of a butadiyne-linked porphyrin dimer: influence of conformational flexibility in the ground and first singlet excited state. J Phys Chem C 111:7192

    Article  CAS  Google Scholar 

  21. Winters MU, Dahlstedt E, Blades HE, Wilson CJ, Frampton MJ, Anderson HL, Albinsson B (2007) Probing the efficiency of electron transfer through porphyrin-based molecular wires. J Am Chem Soc 129:4291

    Article  CAS  PubMed  Google Scholar 

  22. Taylor PN, Anderson HL (1999) Cooperative self-assembly of double-strand conjugated porphyrin ladders. J Am Chem Soc 121:11538

    Article  CAS  Google Scholar 

  23. Hogben HJ, Sprafke JK, Hoffmann M, Pawlicki M, Anderson HL (2011) Stepwise effective molarities in porphyrin oligomer complexes: preorganization results in exceptionally strong chelate cooperativity. J Am Chem Soc 133:20962

    Article  CAS  PubMed  Google Scholar 

  24. Bhyrappa P, Krishnan V, Nethaji M (1993) Solvation and axial ligation properties of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II). J Chem Soc Dalton Trans 1901

    Google Scholar 

  25. Whitty A (2008) Cooperativity and biological complexity. Nat Chem Biol 4:435

    Article  CAS  PubMed  Google Scholar 

  26. Perutz MF (2009) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22:139

    Article  Google Scholar 

  27. Hunter CA, Anderson HL (2009) What is cooperativity?. Angew Chem Int Ed 48:7488

    Article  CAS  Google Scholar 

  28. Busch DH (1992) Structural definition of chemical templates and the prediction of new and unusual materials. J Inclusion Phenom Mol Recognit Chem 12:389

    Article  CAS  Google Scholar 

  29. Fatin-Rouge N, Blanc S, Pfeil A, Rigault A, Albrecht-Gary A-M, Lehn J-M (2001) Self‐assembly of tricuprous double helicates: thermodynamics, kinetics, and mechanism. Helv Chim Acta 84:1694

    Article  CAS  Google Scholar 

  30. Lehn J-M (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angew Chem Int Ed 27:89

    Article  Google Scholar 

  31. Lehn J-M, Rigault A (1988) Helicates: tetra‐ and pentanuclear double helix complexes of cuI and poly(bipyridine) strands. Angew Chem Int Ed 27:1095

    Article  Google Scholar 

  32. Lehn J-M (2002) Toward self-organization and complex matter. Science 295:2400

    Article  CAS  PubMed  Google Scholar 

  33. Núñez-Villanueva D, Iadevaia G, Stross AE, Jinks MA, Swain JA, Hunter CA (2017) H-bond self-assembly: folding versus duplex formation. J Am Chem Soc 139:6654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310

    Article  CAS  Google Scholar 

  35. Adams H, Chekmeneva E, Hunter CA, Misuraca MC, Navarro C, Turega SM (2013) Quantification of the effect of conformational restriction on supramolecular effective molarities. J Am Chem Soc 135:1853

    Google Scholar 

  36. von Krbek LKS, Achazi AJ, Solleder M, Weber M, Paulus B, Schalley CA (2016) Allosteric and chelate cooperativity in divalent crown ether/ammonium complexes with strong binding enhancement. Chem Eur J 22:15475

    Article  CAS  Google Scholar 

  37. Anderson S, Anderson HL, Sanders JKM (1993) Expanding roles for templates in synthesis. Acc Chem Res 26:469

    Article  CAS  Google Scholar 

  38. Hoffmann M, Kärnbratt J, Chang M-H, Herz LM, Albinsson B, Anderson HL (2008) Enhanced π conjugation around a porphyrin[6] nanoring. Angew Chem Int Ed 47:4993

    Article  CAS  Google Scholar 

  39. O’Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TD, Saywell A, Blunt MO, O’Shea JN, Beton PH, Malfois M, Anderson HL (2011) Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469:72

    Article  CAS  PubMed  Google Scholar 

  40. Durot S, Taesch J, Heitz V (2014) Multiporphyrinic cages: architectures and functions. Chem Rev 114:8542

    CAS  PubMed  Google Scholar 

  41. Anderson HL, Sanders JKM (1990) Amine‐template‐directed synthesis of cyclic porphyrin oligomers. Angew Chem Int Ed 29:1400

    Article  Google Scholar 

  42. Li J, Ambroise A, Yang SI, Diers JR, Seth J, Wack CR, Bocian DF, Holten D, Lindsey JS (1999) Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins. J Am Chem Soc 121:8927

    Article  CAS  Google Scholar 

  43. Yu L, Lindsey JS (2001) Rational syntheses of cyclic hexameric porphyrin arrays for studies of self-assembling light-harvesting systems. J Org Chem 66:7402

    Article  CAS  PubMed  Google Scholar 

  44. Tomizaki K-Y, Yu L, Wei L, Bocian DF, Lindsey JS (2003) Synthesis of cyclic hexameric porphyrin arrays. Anchors for surface immobilization and columnar self-assembly. J Org Chem 68:8199

    Article  PubMed  Google Scholar 

  45. Mongin O, Schuwey A, Vallot M-A, Gossauer A (1999) Synthesis of a macrocyclic porphyrin hexamer with a nanometer-sized cavity as a model for the light-harvesting arrays of purple bacteria. Tetrahedron Lett 40:8347

    Article  CAS  Google Scholar 

  46. Rucareanu S, Schuwey A, Gossauer A (2006) One-step template-directed synthesis of a macrocyclic tetraarylporphyrin hexamer based on supramolecular interactions with a C3-symmetric Tetraarylporphyrin trimer. J Am Chem Soc 128:3396

    Article  CAS  PubMed  Google Scholar 

  47. Tashiro K, Aida T, Zheng J-Y, Kinbara K, Saigo K, Sakamoto S, Yamaguchi K (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J Am Chem Soc 121:9477

    Article  CAS  Google Scholar 

  48. Yanagisawa M, Tashiro K, Yamasaki M, Aida T (2007) Hosting fullerenes by dynamic bond formation with an iridium porphyrin cyclic dimer: a “chemical friction” for rotary guest motions. J Am Chem Soc 129:11912

    Article  CAS  PubMed  Google Scholar 

  49. Tashiro K, Hirabayashi Y, Aida T, Saigo K, Fujiwara K, Komatsu K, Sakamoto S, Yamaguchi K (2002) A supramolecular oscillator composed of carbon nanocluster C120 and a Rhodium(III) Porphyrin cyclic dimer. J Am Chem Soc 124:12086

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann M, Wilson CJ, Odell B, Anderson HL (2007) Template‐directed synthesis of a π‐conjugated porphyrin nanoring. Angew Chem Int Ed 46:3122

    Article  CAS  Google Scholar 

  51. Kondratuk DV, Perdigao LMA, O’Sullivan MC, Svatek S, Smith G, O’Shea JN, Beton PH, Anderson HL (2012) Two vernier‐templated routes to a 24‐porphyrin nanoring. Angew Chem Int Ed 51:6696

    Article  CAS  Google Scholar 

  52. Kamonsutthipaijit N, Anderson HL (2017) Template-directed synthesis of linear porphyrin oligomers: classical, vernier and mutual vernier. Chem Sci 8:2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kondratuk DV, Perdigão LMA, Esmail AMS, O’Shea JN, Beton PH, Anderson HL (2015) Supramolecular nesting of cyclic polymers. Nat Chem 7:317

    Article  CAS  PubMed  Google Scholar 

  54. Neuhaus P, Cnossen A, Gong JQ, Herz LM, Anderson HL (2015) A molecular nanotube with three‐dimensional π‐conjugation. Angew Chem Int Ed 54:7344

    Article  CAS  Google Scholar 

  55. Favereau L, Cnossen A, Kelber JB, Gong JQ, Oetterli RM, Cremers J, Herz LM, Anderson HL (2015) Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings. J Am Chem Soc 137:14256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stulz E, Scott SM, Ng Y-F, Bond AD, Teat SJ, Darling SL, Feeder N, Sanders JKM (2003) Construction of multiporphyrin arrays using ruthenium and rhodium coordination to phosphines. Inorg Chem 42:6564

    Article  CAS  PubMed  Google Scholar 

  57. Haycock RA, Hunter CA, James DA, Michelsen U, Sutton LR (2000) Self-assembly of oligomeric porphyrin rings. Org Lett 2:2435

    Article  CAS  PubMed  Google Scholar 

  58. Stulz E, Ng Y-F, Scott SM, Sanders JKM (2002) Amplification of a cyclic mixed-metalloporphyrin tetramer from a dynamic combinatorial library through orthogonal metal coordination. Chem Commun 524

    Google Scholar 

  59. Davidson GJE, Tong LH, Raithby PR, Sanders JKM (2006) Aluminium(iii) porphyrins as supramolecular building blocks. Chem Commun 3087

    Google Scholar 

  60. Rousseaux SAL, Gong JQ, Haver R, Odell B, Claridge TDW, Herz LM, Anderson HL (2015) Self-assembly of russian doll concentric porphyrin nanorings. J Am Chem Soc 137:12713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borovkov V, Lintuluoto JM, Inoue Y (1998) Efficient synthesis of unsymmetrical transition metalloporphyrin dimers under mild conditions. Synlett 768

    Google Scholar 

  62. Borovkov V, Lintuluoto JM, Inoue Y (1999) Synthesis of Zn‐, Mn‐, and Fe‐containing mono‐ and heterometallated ethanediyl‐bridged porphyrin dimers. Helv Chim Acta 82:919

    Article  CAS  Google Scholar 

  63. Brun AM, Harriman A, Heitz V, Sauvage JP (1991) Charge transfer across oblique bisporphyrins: two-center photoactive molecules. J Am Chem Soc 113:8657

    Article  CAS  Google Scholar 

  64. Brun AM, Atherton SJ, Harriman A, Heitz V, Sauvage JP (1992) Photophysics of entwined porphyrin conjugates: competitive exciton annihilation, energy-transfer, electron-transfer, and superexchange processes. J Am Chem Soc 114:4632

    Article  CAS  Google Scholar 

  65. Harriman A, Heitz V, Chambron J-C, Sauvage J-P (1994) Electronic coupling in oblique bisporphyrins. Coord Chem Rev 132:229

    Article  CAS  Google Scholar 

  66. Andersson M, Linke M, Chambron J-C, Davidsson J, Heitz V, Hammarström L, Sauvage J-P (2002) Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination. J Am Chem Soc 124:4347

    Article  CAS  PubMed  Google Scholar 

  67. Linke M, Fujita N, Chambron J-C, Heitz V, Sauvage J-P (2001) A [2]-catenane whose rings incorporate two differently metallated porphyrins. New J Chem 25:790

    Article  CAS  Google Scholar 

  68. Andréasson J, Kodis G, Ljungdahl T, Moore AL, Moore TA, Gust D, Mårtensson J, Albinsson B (2003) Photoinduced hole transfer from the triplet state in a porphyrin-based donor−bridge−acceptor system. J Phys Chem A 107:8825

    Article  CAS  Google Scholar 

  69. Pettersson K, Wiberg J, Ljungdahl T, Mårtensson J, Albinsson B (2006) Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor−bridge−acceptor systems. J Phys Chem A 110:319

    Article  CAS  PubMed  Google Scholar 

  70. Fortage J, Boixel J, Blart E, Hammarström L, Becker HC, Odobel F (2008) Single‐step electron transfer on the nanometer scale: ultra‐fast charge shift in strongly coupled zinc porphyrin–gold porphyrin dyads. Chem Eur J 14:3467

    Article  CAS  PubMed  Google Scholar 

  71. Fortage J, Boixel J, Blart E, Becker HC, Odobel F (2009) Very fast single-step photoinduced charge separation in zinc porphyrin bridged to a gold porphyrin by a bisethynyl quaterthiophene. Inorg Chem 48:518

    Article  CAS  PubMed  Google Scholar 

  72. Fortage J, Scarpaci A, Viau L, Pellegrin Y, Blart E, Falkenström M, Hammarström L, Asselberghs I, Kellens R, Libaers W, Clays K, Eng MP, Odobel F (2009) Charge‐transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad. Chem Eur J 15:9058

    Article  CAS  PubMed  Google Scholar 

  73. Boixel J, Fortage J, Blart E, Pellegrin Y, Hammarstrom L, Becker H-C, Odobel F (2010) Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvaleneelectron donor to a zinc/gold bisporphyrin. Dalton Trans 39:1450

    Article  CAS  PubMed  Google Scholar 

  74. Larsen RG, Singel DJ (1993) Double electron–electron resonance spin–echo modulation: spectroscopic measurement of electron spin pair separations in orientationally disordered solids. J Chem Phys 98:5134

    Article  CAS  Google Scholar 

  75. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1

    Article  CAS  PubMed  Google Scholar 

  76. Lovett JE, Hoffmann M, Cnossen A, Shutter ATJ, Hogben HJ, Warren JE, Pascu SI, Kay CWM, Timmel CR, Anderson HL (2009) Probing flexibility in porphyrin-based molecular wires using double electron electron resonance. J Am Chem Soc 131:13852

    Article  CAS  PubMed  Google Scholar 

  77. Richert S, Kuprov I, Peeks MD, Suturina EA, Cremers J, Anderson HL, Timmel CR (2017) Quantifying the exchange coupling in linear copper porphyrin oligomers. PCCP 19:16057

    Article  CAS  PubMed  Google Scholar 

  78. Lambert CJ (2015) Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem Soc Rev 44:875

    Article  CAS  PubMed  Google Scholar 

  79. Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16011

    Article  CAS  Google Scholar 

  80. Patoux C, Coudret C, Launay J-P, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36:5037

    Article  CAS  Google Scholar 

  81. Li Z, Smeu M, Rives A, Maraval V, Chauvin R, Ratner MA, Borguet E (2015) Towards graphyne molecular electronics. Nat Commun 6:6321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cremers .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cremers, J. (2020). Introduction. In: Electronic Communication in Heterometallated Porphyrin Oligomers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-39101-0_1

Download citation

Publish with us

Policies and ethics