Skip to main content

Localized Random Shapelets

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11986))

Abstract

Shapelet models have attracted a lot of attention from researchers in the time series community, due in particular to its good classification performance. However, such models only inform about the presence/absence of local temporal patterns. Structural information about the localization of these patterns is ignored. In addition, end-to-end learning shapelet models tend to generate meaningless shapelets, leading to poorly interpretable models. In this paper, we aim at designing an interpretable shapelet model that takes into account the localization of the shapelets in the time series. Time series are transformed into feature vectors composed of both a distance and a localization information. Then, we design a hierarchical feature selection process using regularization. This process can be tuned to select, for each shapelet, either only its distance information or both distance and localization information. It is hence possible for every selected shapelet to analyze whether only the presence or the presence and the localization contributed to the decision process improving interpretability of the decision. Experiments show that this feature selection process has competitive performance compared to state-of-the-art shapelet-based classifiers, while providing better interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the term distance is an abuse of notation since d(T, S) is not a distance, mathematically speaking.

  2. 2.

    https://github.com/rtavenar/localized_random_shapelets.

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31, 606–660 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bagnall, A., Lines, J., Vickers, W., Keogh, E.: The UEA & UCR time series classification repository. www.timeseriesclassification.com

  3. Bailly, A., Malinowski, S., Tavenard, R., Chapel, L., Guyet, T.: Dense bag-of-temporal-SIFT-words for time series classification. In: Douzal-Chouakria, A., Vilar, J.A., Marteau, P.-F. (eds.) AALTD 2015. LNCS (LNAI), vol. 9785, pp. 17–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44412-3_2. https://hal.archives-ouvertes.fr/hal-01252726

    Chapter  Google Scholar 

  4. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  5. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 392–401 (2014)

    Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  7. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series classification. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 289–297 (2012)

    Google Scholar 

  8. Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering time series shapelets, pp. 668–676, May 2013

    Google Scholar 

  9. Renard, X., Rifqi, M., Erray, W., Detyniecki, M.: Random-shapelet: an algorithm for fast shapelet discovery. In: IEEE International Conference on Data Science and Advanced Analytics, pp. 1–10 (2015)

    Google Scholar 

  10. Renard, X., Rifqi, M., Fricout, G., Detyniecki, M.: EAST representation: fast discriminant temporal patterns discovery from time series. In: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data (2016)

    Google Scholar 

  11. Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural networks. Neurocomputing 241, 81–89 (2017)

    Article  Google Scholar 

  12. Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)

    Article  MathSciNet  Google Scholar 

  13. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  14. Tavenard, R.: tslearn: a machine learning toolkit dedicated to time-series data (2017). https://github.com/rtavenar/tslearn

  15. Tavenard, R., Malinowski, S., Chapel, L., Bailly, A., Sanchez, H., Bustos, B.: Efficient temporal kernels between feature sets for time series classification. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 528–543. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_32. https://halshs.archives-ouvertes.fr/halshs-01561461

    Chapter  Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  18. Wistuba, M., Grabocka, J., Schmidt-Thieme, L.: Ultra-fast shapelets for time series classification. CoRR abs/1503.05018 (2015). http://arxiv.org/abs/1503.05018

  19. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mael Guillemé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guillemé, M., Malinowski, S., Tavenard, R., Renard, X. (2020). Localized Random Shapelets. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu, A., Guyet, T., Tavenard, R. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2019. Lecture Notes in Computer Science(), vol 11986. Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39098-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39097-6

  • Online ISBN: 978-3-030-39098-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics