Skip to main content

An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis

  • 550 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11986)

Abstract

This paper describes an initial investigation on adapting windowed Dynamic Time Warping (DTW) for enhancing the reliability of fast DTW for Electrocardiogram analysis in Cardiology, a domain where risks are especially important to avoid. The key question it explores is whether it is worthwhile to adapt the window size of DTW for every query temporal sequence, a factor critically determining the speed-accuracy tradeoff of DTW. It in addition extends the adaptation to cover also the order of sequences for lower bound calculations. Experiments on ECG temporal sequences show that the techniques help significantly reduce risks that windowed DTW algorithms are subject to and at the same time keeping a high speed.

Keywords

  • DTW
  • Time series analytics
  • Algorithm optimizations
  • Electrocardiogram

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-39098-3_16
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-39098-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. 1.

    https://physionet.org/.

References

  1. Ratanamahatana, C.A., Keogh, E.: Three myths about dynamic time warping. In: Proceedings of SIAM International Conference on Data Mining (SDM 2005), Newport Beach, CA, 21–23 April 2005, pp. 506–510 (2005)

    Google Scholar 

  2. Coba, V., Whitmill, M., et al.: Resuscitation bundle compliance in severe sepsis and septic shock: improves survival, is better late than never. J. Intensive Care Med. 26, 304–313 (2011)

    CrossRef  Google Scholar 

  3. Dellinger, R.P., Levy, M.M., et al.: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 34, 17–60 (2008)

    CrossRef  Google Scholar 

  4. Elixhauser, A., Friedman, B., Stranges, E.: Septicemia in U.S. Hospitals, 2009. HCUP Statistical Brief #122. Agency for Healthcare Research and Quality, Rockville, MD, October 2011. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb122.pdf

  5. Henry, K.E., et al.: A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med. 7(299), 299ra122 (2015)

    CrossRef  Google Scholar 

  6. U.S. Department of Health and Human Service: Health, United States, 2016: With Chartbook on Long-term Trends in Health (2017)

    Google Scholar 

  7. Keogh, E.: Exact indexing of dynamic time warping. In: 28th International Conference on Very Large Data Base, Hong Kong, pp. 406–417 (2002)

    CrossRef  Google Scholar 

  8. Kumar, A., et al.: Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34, 1589–1596 (2006)

    CrossRef  Google Scholar 

  9. Martin, G.S., et al.: The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003)

    CrossRef  Google Scholar 

  10. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Trans. Acoust. Speech Signal Process. ASSP-26, 43–49 (1978)

    CrossRef  Google Scholar 

  11. Torio, C., Andrews, R.: National inpatient hospital costs: the most expensive conditions by payer, 2013. Agency for Healthcare Research and Quality, Rockville, MD (2013)

    Google Scholar 

  12. Mueen, A., Keogh, E.J.: Extracting optimal performance from dynamic time warping. In: KDD 2016, pp. 2129–2130 (2016)

    Google Scholar 

  13. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. J. Data Min. Knowl. Discov. 31(3), 606–660 (2017)

    CrossRef  MathSciNet  Google Scholar 

  14. Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition using multisensor data fusion based on reservoir computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016)

    CrossRef  Google Scholar 

  15. Shokoohi-Yekta, M., Wang, J., Keogh, E.: On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 289–297 (2015)

    Google Scholar 

  16. Froese, V., Jain, B.: Fast exact dynamic time warping on run-length encoded time series. arXiv (2019)

    Google Scholar 

  17. Moor, M., Horn, M., Rieck, B., Roqueiro, D., Borgwardt, K.: Temporal convolutional networks and dynamic time warping can drastically improve the early prediction of sepsis. arXiv (2019)

    Google Scholar 

  18. Tan, C.W., Petitjean, F., Webb, G.I.: Elastic bands across the path: a new framework and method to lower bound DTW. In: SIAM International Conference on Data Mining (2019)

    Google Scholar 

  19. Silva, D.F., Batista, G.E.A.P.A.: Speeding up all-pairwise dynamic time warping matrix calculation. In: SIAM International Conference on Data Mining (2016)

    Google Scholar 

  20. Al-Naymat, G., Chawla, S., Taheri, J.: SparseDTW: a novel approach to speed up dynamic time warping. In: Proceedings of the Eighth Australasian Data Mining Conference. AusDM 2009 (2009)

    Google Scholar 

  21. Caiani, E., et al.: Warped-average template technique to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular volume. In: Computers in Cardiology, vol. 5, pp. 73–76 (1998)

    Google Scholar 

  22. CinCECGtorso dataset. http://www.timeseriesclassification.com/description.php?Dataset=CinCECGtorso

  23. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. ASSP-23, 52–72 (1975)

    Google Scholar 

  24. Chu, S., Keogh, E., Hart, D., Pazzani, M.: Iterative deepening dynamic time warping for time series. In: Proceedings of the Second SIAM International Conference on Data Mining, Arlington, Virginia (2002)

    Google Scholar 

  25. Keogh, E., Pazzani, M.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Massachusetts, pp. 285–289 (2000)

    Google Scholar 

  26. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    CrossRef  Google Scholar 

  27. UCRiverside Time Series. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Shen, D., Chi, M. (2020). An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu, A., Guyet, T., Tavenard, R. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2019. Lecture Notes in Computer Science(), vol 11986. Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39098-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39097-6

  • Online ISBN: 978-3-030-39098-3

  • eBook Packages: Computer ScienceComputer Science (R0)