Abstract
Urbanization affects ecosystem health and downstream communities by changing the natural flow regime. In this context, Low Impact Development (LID) systems are important tools in sustainable development. There are many aspects in design and operation of LID systems and the choice of the selected LID and its location in the basin can affect the results. In this regard, the Mathematical Optimization Approaches can be an ideal method to optimize LIDs use. Here we consider the application of TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and Rough Set theory (multiple attributes decision-making method). An advantage of using the Rough Set method in LID systems is that the selected decisions are explicit, and the method is not limited by restrictive assumptions. This new mathematical optimization approach for LID systems improves previous studies on this subject. Moreover, it provides an additional tool for the analysis of essential attributes to select and optimize the best LID system for a project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, D.L., Shou, Y.X., Dickerson, R.R.: Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett. 36(24), 1–5 (2009)
Haase, D.: Effects of urbanisation on the water balance–A long-term trajectory. Environ. Impact Assess. Rev. 29(4), 211–219 (2009)
Jacob, D.J., Winner, D.A.: Effect of climate change on air quality. Atmos. Environ. 43(1), 51–63 (2009)
Piro, P., et al.: Flood risk mitigation in a Mediterranean urban area: the case study of Rossano Scalo (CS – Calabria, Italy). In: Mannina, G. (ed.) UDM 2018. GET, pp. 339–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99867-1_57
Miller, J.D., Hutchins, M.: The impacts of urbanisation and climate change on urban flooding and urban water quality: a review of the evidence concerning the United Kingdom. J. Hydrol.: Reg. Stud. 12, 345–362 (2017)
Piro, P., Turco, M., Palermo, S.A., Principato, F., Brunetti, G.: A comprehensive approach to stormwater management problems in the next generation drainage networks. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart Urban Ecosystems. IT, pp. 275–304. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96550-5_12
Raimondi, A., Becciu, G.: On pre-filling probability of flood control detention facilities. Urban Water J. 12, 344–351 (2015)
Zischg, J., Rogers, B., Gunn, A., Rauch, W., Sitzenfrei, R.: Future trajectories of urban drainage systems: a simple exploratory modeling approach for assessing socio-technical transitions. Sci. Total Environ. 651, 1709–1719 (2019)
Fletcher, T.D., et al.: SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J. 12(7), 525–542 (2015)
Razzaghmanesh, M., Beecham, S., Salemi, T.: The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban For. Urban Green. 15, 89–102 (2016)
Maiolo, M., Carini, M., Capano, G., Piro, P.: Synthetic sustainability index (SSI) based on life cycle assessment approach of low impact development in the Mediterranean area. Cogent Eng. 4(1), 1410272 (2017)
Zahmatkesh, Z., Burian, S.J., Karamouz, M., Tavakol-Davani, H., Goharian, E.: Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City. J. Irrig. Drain. Eng. 141(1), 04014043 (2014)
Jia, H., Yao, H., Shaw, L.Y.: Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 7(5), 709–720 (2013)
Piro, P., Carbone, M., Morimanno, F., Palermo, S.A.: Simple flowmeter device for LID systems: from laboratory procedure to full-scale implementation. Flow Meas. Instrum. 65, 240–249 (2019)
Turco, M., Brunetti, G., Carbone, M., Piro, P.: Modelling the hydraulic behaviour of permeable pavements through a reservoir element model. In: International Multidisciplinary Scientific Geo Conference: SGEM: Surveying Geology & mining Ecology Management, vol. 18, pp. 507–514 (2018)
Eckart, K., McPhee, Z., Bolisetti, T.: Performance and implementation of low impact development–a review. Sci. Total Environ. 607, 413–432 (2017)
Palermo, S.A., Zischg, J., Sitzenfrei, R., Rauch, W., Piro, P.: Parameter sensitivity of a microscale hydrodynamic model. In: Mannina, G. (ed.) UDM 2018. GET, pp. 982–987. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99867-1_169
Jia, H., et al.: Field monitoring of a LID-BMP treatment train system in China. Environ. Monit. Assess. 187(6), 373 (2015)
Zhang, G., Hamlett, J.M., Reed, P., Tang, Y.: Multi-objective optimization of low impact development designs in an urbanizing watershed. Open J. Optim. 2, 95–108 (2013)
Pawlak, Z.: Rough set theory and its applications. J. Telecommun. Inf. Technol. 3, 7–10 (2002)
Arabani, M., Sasanian, S., Farmand, Y., Pirouz, M.: Rough-set theory in solving road pavement management problems (case study: Ahwaz-Shush Highway). Comput. Res. Prog. Appl. Sci. Eng. (CRPASE) 3(2), 62–70 (2017)
Arabani, M., Pirouz, M., Pirouz, B.: Geotechnical investigation optimization using rough set theory. In: 9th International Congress on Civil Engineering (9ICCE), Isfahan, Iran (2012)
Hwang, C.L., Yoon, K.P.: Multiple Attributes Decision-Making Methods and Applications. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9
Haghshenas, S.S., Neshaei, M.A.L., Pourkazem, P., Haghshenas, S.S.: The risk assessment of dam construction projects using fuzzy TOPSIS (case study: Alavian Earth Dam). Civ. Eng. J. 2(4), 158–167 (2016)
Balioti, V., Tzimopoulos, C., Evangelides, C.: Multi-criteria decision making using TOPSIS method under fuzzy environment, application in spillway selection. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 637 (2018)
İç, Y.T.: A TOPSIS based design of experiment approach to assess company ranking. Appl. Math. Comput. 227, 630–647 (2014)
Krohling, R.A., Pacheco, A.G.: A-TOPSIS an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 55, 308–317 (2015)
Haghshenas, S.S., Mikaeil, R., Haghshenas, S.S., Naghadehi, M.Z., Moghadam, P.S.: Fuzzy and classical MCDM techniques to rank the slope stabilization methods in a rock-fill reservoir dam. Civ. Eng. J. 3(6), 382–394 (2017)
Acknowledgements
The study was co-funded by the Italian Operational Project (PON)—Research and Competitiveness for the convergence regions 2007/2013—I Axis “Support to structural changes” operative objective 4.1.1.1. “Scientific-technological generators of transformation processes of the productive system and creation of new sectors” Action II: “Interventions to support industrial research”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pirouz, B., Palermo, S.A., Turco, M., Piro, P. (2020). New Mathematical Optimization Approaches for LID Systems. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-39081-5_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39080-8
Online ISBN: 978-3-030-39081-5
eBook Packages: Computer ScienceComputer Science (R0)