Skip to main content

New Mathematical Optimization Approaches for LID Systems

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Urbanization affects ecosystem health and downstream communities by changing the natural flow regime. In this context, Low Impact Development (LID) systems are important tools in sustainable development. There are many aspects in design and operation of LID systems and the choice of the selected LID and its location in the basin can affect the results. In this regard, the Mathematical Optimization Approaches can be an ideal method to optimize LIDs use. Here we consider the application of TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and Rough Set theory (multiple attributes decision-making method). An advantage of using the Rough Set method in LID systems is that the selected decisions are explicit, and the method is not limited by restrictive assumptions. This new mathematical optimization approach for LID systems improves previous studies on this subject. Moreover, it provides an additional tool for the analysis of essential attributes to select and optimize the best LID system for a project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, D.L., Shou, Y.X., Dickerson, R.R.: Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett. 36(24), 1–5 (2009)

    Article  Google Scholar 

  2. Haase, D.: Effects of urbanisation on the water balance–A long-term trajectory. Environ. Impact Assess. Rev. 29(4), 211–219 (2009)

    Article  Google Scholar 

  3. Jacob, D.J., Winner, D.A.: Effect of climate change on air quality. Atmos. Environ. 43(1), 51–63 (2009)

    Article  Google Scholar 

  4. Piro, P., et al.: Flood risk mitigation in a Mediterranean urban area: the case study of Rossano Scalo (CS – Calabria, Italy). In: Mannina, G. (ed.) UDM 2018. GET, pp. 339–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99867-1_57

    Chapter  Google Scholar 

  5. Miller, J.D., Hutchins, M.: The impacts of urbanisation and climate change on urban flooding and urban water quality: a review of the evidence concerning the United Kingdom. J. Hydrol.: Reg. Stud. 12, 345–362 (2017)

    Google Scholar 

  6. Piro, P., Turco, M., Palermo, S.A., Principato, F., Brunetti, G.: A comprehensive approach to stormwater management problems in the next generation drainage networks. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart Urban Ecosystems. IT, pp. 275–304. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96550-5_12

    Chapter  Google Scholar 

  7. Raimondi, A., Becciu, G.: On pre-filling probability of flood control detention facilities. Urban Water J. 12, 344–351 (2015)

    Article  Google Scholar 

  8. Zischg, J., Rogers, B., Gunn, A., Rauch, W., Sitzenfrei, R.: Future trajectories of urban drainage systems: a simple exploratory modeling approach for assessing socio-technical transitions. Sci. Total Environ. 651, 1709–1719 (2019)

    Article  Google Scholar 

  9. Fletcher, T.D., et al.: SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J. 12(7), 525–542 (2015)

    Article  Google Scholar 

  10. Razzaghmanesh, M., Beecham, S., Salemi, T.: The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban For. Urban Green. 15, 89–102 (2016)

    Article  Google Scholar 

  11. Maiolo, M., Carini, M., Capano, G., Piro, P.: Synthetic sustainability index (SSI) based on life cycle assessment approach of low impact development in the Mediterranean area. Cogent Eng. 4(1), 1410272 (2017)

    Article  Google Scholar 

  12. Zahmatkesh, Z., Burian, S.J., Karamouz, M., Tavakol-Davani, H., Goharian, E.: Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City. J. Irrig. Drain. Eng. 141(1), 04014043 (2014)

    Article  Google Scholar 

  13. Jia, H., Yao, H., Shaw, L.Y.: Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 7(5), 709–720 (2013)

    Article  Google Scholar 

  14. Piro, P., Carbone, M., Morimanno, F., Palermo, S.A.: Simple flowmeter device for LID systems: from laboratory procedure to full-scale implementation. Flow Meas. Instrum. 65, 240–249 (2019)

    Article  Google Scholar 

  15. Turco, M., Brunetti, G., Carbone, M., Piro, P.: Modelling the hydraulic behaviour of permeable pavements through a reservoir element model. In: International Multidisciplinary Scientific Geo Conference: SGEM: Surveying Geology & mining Ecology Management, vol. 18, pp. 507–514 (2018)

    Google Scholar 

  16. Eckart, K., McPhee, Z., Bolisetti, T.: Performance and implementation of low impact development–a review. Sci. Total Environ. 607, 413–432 (2017)

    Article  Google Scholar 

  17. Palermo, S.A., Zischg, J., Sitzenfrei, R., Rauch, W., Piro, P.: Parameter sensitivity of a microscale hydrodynamic model. In: Mannina, G. (ed.) UDM 2018. GET, pp. 982–987. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99867-1_169

    Chapter  Google Scholar 

  18. Jia, H., et al.: Field monitoring of a LID-BMP treatment train system in China. Environ. Monit. Assess. 187(6), 373 (2015)

    Article  Google Scholar 

  19. Zhang, G., Hamlett, J.M., Reed, P., Tang, Y.: Multi-objective optimization of low impact development designs in an urbanizing watershed. Open J. Optim. 2, 95–108 (2013)

    Article  Google Scholar 

  20. Pawlak, Z.: Rough set theory and its applications. J. Telecommun. Inf. Technol. 3, 7–10 (2002)

    Google Scholar 

  21. Arabani, M., Sasanian, S., Farmand, Y., Pirouz, M.: Rough-set theory in solving road pavement management problems (case study: Ahwaz-Shush Highway). Comput. Res. Prog. Appl. Sci. Eng. (CRPASE) 3(2), 62–70 (2017)

    Google Scholar 

  22. Arabani, M., Pirouz, M., Pirouz, B.: Geotechnical investigation optimization using rough set theory. In: 9th International Congress on Civil Engineering (9ICCE), Isfahan, Iran (2012)

    Google Scholar 

  23. Hwang, C.L., Yoon, K.P.: Multiple Attributes Decision-Making Methods and Applications. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9

    Book  MATH  Google Scholar 

  24. Haghshenas, S.S., Neshaei, M.A.L., Pourkazem, P., Haghshenas, S.S.: The risk assessment of dam construction projects using fuzzy TOPSIS (case study: Alavian Earth Dam). Civ. Eng. J. 2(4), 158–167 (2016)

    Article  Google Scholar 

  25. Balioti, V., Tzimopoulos, C., Evangelides, C.: Multi-criteria decision making using TOPSIS method under fuzzy environment, application in spillway selection. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 637 (2018)

    Google Scholar 

  26. İç, Y.T.: A TOPSIS based design of experiment approach to assess company ranking. Appl. Math. Comput. 227, 630–647 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Krohling, R.A., Pacheco, A.G.: A-TOPSIS an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 55, 308–317 (2015)

    Article  Google Scholar 

  28. Haghshenas, S.S., Mikaeil, R., Haghshenas, S.S., Naghadehi, M.Z., Moghadam, P.S.: Fuzzy and classical MCDM techniques to rank the slope stabilization methods in a rock-fill reservoir dam. Civ. Eng. J. 3(6), 382–394 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The study was co-funded by the Italian Operational Project (PON)—Research and Competitiveness for the convergence regions 2007/2013—I Axis “Support to structural changes” operative objective 4.1.1.1. “Scientific-technological generators of transformation processes of the productive system and creation of new sectors” Action II: “Interventions to support industrial research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Pirouz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pirouz, B., Palermo, S.A., Turco, M., Piro, P. (2020). New Mathematical Optimization Approaches for LID Systems. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics