Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12009))

Abstract

Automatic anatomical landmark detection is beneficial to many other medical image analysis tasks. In this paper, we propose a two-stage cascade regression model to make coarse-to-fine landmark detection. Specifically, in the first stage, a Gaussian heatmap regression model customized from U-Net is exploited to make primary prediction, which takes the downsampled entire image as input. In the second stage, we develop a CNN to regress displacements from the primary prediction to the landmarks, using patches in original resolution centered at the previous localization as input. Owing to the different sizes and resolutions of inputs in two stages, the global context information and local appearance can be integrated by our algorithm. The spacial relationships among landmarks can also be exploited by predicting all the landmarks simultaneously. In evaluation on the coronary and aorta CTA images, we show that our proposed method is widely applicable and delivers state-of-the-art performance even with limited training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, S.K.: Discriminative anatomy detection: classification vs regression. Pattern Recogn. Lett. 43, 25–38 (2014)

    Article  Google Scholar 

  2. Yang, D., et al.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: IEEE ISBI (2015)

    Google Scholar 

  3. Gao, Y., Shen, D.: Context-aware anatomical landmark detection: application to deformable model initialization in prostate CT images. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 165–173. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10581-9_21

    Chapter  Google Scholar 

  4. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  5. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_27

    Chapter  Google Scholar 

  6. Noothout, J.M.H., de Vos, B.D., Wolterink, J.M., Leiner, T., Isgum, I.: CNN-based landmark detection in cardiac CTA scans. In: MIDL (2018)

    Google Scholar 

  7. O’Neil, A.Q., et al.: Attaining human-level performance with atlas location autocontext for anatomical landmark detection in 3D CT data. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 470–484. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_34

    Chapter  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. He, Z., Kan, M., Zhang, J., Chen, X., Shan, S.: A fully end-to-end cascaded CNN for facial landmark detection. In: IEEE FG (2017)

    Google Scholar 

  10. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: CVPR (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Z., Duan, Y., Wu, Z., Feng, J., Zhou, J. (2020). A Cascade Regression Model for Anatomical Landmark Detection. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics