Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12009))

Abstract

Accurate left ventricular (LV) segmentation in cardiac MRI facilitates quantification of clinical parameters such as LV volume and ejection fraction (EF). We present a CNN-based method to obtain a 3D representation of LV by integrating information from 2D short-axis and horizontal and vertical long-axis images. Our CNN is flexible to the number of input slices and uses an additional input of image coordinates as spatial context. This concept is validated on variations of two well-known CNN architectures for medical image segmentation: U-Net and DeepMedic. Five-fold cross validation on a dataset of 20 patients achieved a correlation of 95.0/93.1\(\%\) for quantification of end-diastolic volume, 91.6/90.8\(\%\) for end-systolic volume and 80.5/84.5\(\%\) for EF for the two architectures respectively. We show that (1) incorporating long-axis data improves segmentation performance and (2) providing spatial context by adding image coordinates as input to the CNN yields similar performance with a smaller receptive field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  2. Zheng, Q., et al.: 3D consistent & robust segmentation of cardiac images by deep learning with spatial propagation. IEEE Trans. Med. Imaging 37(9), 2137–2148 (2018)

    Article  Google Scholar 

  3. Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8

    Chapter  Google Scholar 

  4. Duan, J., et al.: Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  5. Zotti, C., et al.: Convolutional neural network with shape prior applied to cardiac MRI segmentation. IEEE J. Biomed. Health Inform. 23(3), 1119–1128 (2019)

    Article  Google Scholar 

  6. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Article  Google Scholar 

  7. Wang, C., Smedby, Ö.: Automatic whole heart segmentation using deep learning and shape context. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 242–249. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_26

    Chapter  Google Scholar 

  8. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  9. Luo, G., et al.: Multi-views fusion CNN for left ventricular volumes estimation on cardiac MR images. IEEE Trans. Biomed. Eng. 65(9), 1924–1934 (2018)

    Article  Google Scholar 

  10. Kaggle, Booz Allen Hamilton Inc.: Second Annual Data Science Bowl Kaggle (2015). https://www.kaggle.com/c/second-annual-data-science-bowl

  11. Wachinger, C., et al.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170, 434–445 (2018)

    Article  Google Scholar 

  12. Elen, A., Hermans, J., Ganame, J., et al.: Automatic 3-D breath-hold related motion correction of dynamic multisclice MRI. IEEE Trans. Med. Imaging 29(3), 868–878 (2010)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  16. Maas, A.L., et al.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)

    Google Scholar 

  17. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV 2015, pp. 1026–1034 (2015)

    Google Scholar 

Download references

Acknowledgement

Sofie Tilborghs is supported by a Ph.D. fellowship of the Research Foundation - Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Tilborghs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tilborghs, S., Dresselears, T., Claus, P., Bogaert, J., Maes, F. (2020). 3D Left Ventricular Segmentation from 2D Cardiac MR Images Using Spatial Context. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics