Skip to main content

A Study of the Effect of the Quinacridone Pigment Content and Storage Time on the Process of Crystallization of Pre-oriented Polypropylene/Quinacridone Fibres

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 124))

Abstract

The quinacridone pigment family presents a broad group of organic pigments commonly employed for various colourant applications. Furthermore, they are also acting as high-effective nucleating agents with a significant effect on the process of crystallization of polyolefins and thus affecting most of their physical properties. The presented work is focused on the practically uninvestigated field of research of the effect of storage time on the crystallization of pre-oriented polypropylene fibres with different content of the quinacridone pigment, intended for textiles for niche applications. Based on the results of the analysis of differential scanning calorimetry, performed in the time period of 35 days from the date of manufacture of fibres with a periodicity of 7 days, the dependence of their crystallinity, crystallization and melting temperature on the storage time as well as on the quinacridone content were studied. High-reliable predictive models of these dependencies, suitable for practical application in the textile industry, were created.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avalos-Belmontes, F. et al.: Effect of different nucleating agents on the crystallization of Ziegler-Natta isotactic polypropylene. Int. J. Polym. Sci. 1–9 (2016)

    Article  Google Scholar 

  2. Vogel, R., Gedan-Smolka, M., Häussler Landbrünig, H.: Evaluation of the crystallization of polypropylene at melt spinning conditions using the green chemical orotic acid as nucleating agent. Adv. Res. Text Eng. 3, 1023 (2018)

    Google Scholar 

  3. Gregor-Svetec, D.: Melt spinning of plastic-grade polypropylene. Acta Chim. Slov. 56, 959–966 (2009)

    Google Scholar 

  4. Steinmann, W., Walter, S., Beckers, M. et al.: Thermal analysis of phase transitions and crystallization in polymeric fibers. In: Elkordy, A.A. (ed.) Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry. InTech (2013)

    Google Scholar 

  5. Wehmann, M., Mcculloch, W.J.G.: Melt blowing technology. In: Karger-Kocsis, J. (ed.) Polypropylene. Springer, Dordrecht (1999)

    Google Scholar 

  6. Broda, J.: Structure of polypropylene fibres coloured with organic pigments. In: Dogan, F. (ed.) Polypropylene. IntechOpen (2012)

    Google Scholar 

  7. Pan, D., He, H., Sun, J., et al.: Radial Crystallization difference of melt-spun polypropylene fiber along spinning line. J. Appl. Polym. Sci. 136, 47175 (2019)

    Article  Google Scholar 

  8. Spruiell, J.E., Bound, E.: Melt spinning polypropylene. In: Karger-Kocsis, J. (ed.) Polypropylene. Springer, Dordrecht (1999)

    Google Scholar 

  9. Ma, Z., Fernandez-Ballester, L., Cavallo, D., et al.: High-stress shear-induced crystallization in isotactic polypropylene and propylene/ethylene random copolymers. Macromolecules 46, 2671–2680 (2013)

    Article  Google Scholar 

  10. Pawlak, A., Galeski, A.: Crystallization of polypropylene. In: Karger-Kocsis, J., Bárány, T. (eds.) Polypropylene Handbook (2019)

    Chapter  Google Scholar 

  11. Pawlak, A., Piorkowska, E.: Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym. Sci. 279, 939–946 (2001)

    Article  Google Scholar 

  12. Gradys, A., et al.: Crystallization of polypropylene at various cooling rates. Mat. Sci. Eng. A Struct. 413–414, 442–446 (2005)

    Article  Google Scholar 

  13. Broda, J.: Influence of processing on structure of β-nucleated poly(propylene) fibers. J. Appl. Polym. Sci. 91, 1413–1418 (2004)

    Article  Google Scholar 

  14. Varga, J., Stoll, K., Menyhárd, A., Horváth, Z.: Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J. Appl. Polym. Sci. 121, 1469–1480 (2011)

    Article  Google Scholar 

  15. Zhang, Y., Sun, T., Jiang, W., Han, G.: Crystalline modification of a rare earth nucleating agent for isotactic polypropylene based on its self-assembly. R. Soc. Open Sci. 5, 180247 (2018)

    Article  Google Scholar 

  16. Broda, J.: Morphology of the noncoloured and coloured polypropylene fibres. Polymer 44, 1619–1629 (2003)

    Article  Google Scholar 

  17. Barczewski, M., Matykiewicz, D., Hoffmann, B.: Effect of quinacridone pigments on properties and morphology of injection molded isotactic polypropylene. Int. J. Polym. Sci. 2017, 7043297 (2017)

    Article  Google Scholar 

  18. Mirjalili, F., Moradian, S., Ameri, F.: Enhancing the dyeability of polypropylene fibers by melt blending with polyethylene terephthalate. Sci. World J. 2013, 1–10 (2013)

    Article  Google Scholar 

  19. Hricová, A., Marcinčin, A.: Vplyv pigmentov na štruktúru a vlastnosti syntetických vlakien. III časť. (The influence of pigments on the structure and properties of synthetic fibres. Part III.). Vlákna a textil (Fibres and Textiles) 11, 140–146 (2004)

    Google Scholar 

  20. Dabrowska, I., Fambri, L., Pegoretti, A., et al.: Spinning, drawing and physical properties of polypropylene nanocomposite fibers with fumed nanosilica. Express Polym. Lett. 9, 277–290 (2015)

    Article  Google Scholar 

  21. Petková, M., Ryba, J., Hrabovská, V., et al.: The crystallization of polypropylene/halloysite fibers. J. Therm. Anal. Calorim. 136, 1093–1101 (2019)

    Article  Google Scholar 

  22. Michlík, P., Krivoš, Š., Ujhelyiová, A., Vnenčáková, J.: Structure and properties of POY metallocene polypropylene fibres. Vlákna a textil (Fibres and Textiles) 16, 3–8 (2009)

    Google Scholar 

  23. Jambrich, M.: Štruktúra a vlastnosti vlákien (Structure and properties of fibers). SVŠT Bratislava (1983)

    Google Scholar 

  24. Hammer, A. et al.: Thermal Analysis of Polymers. Selected Applications. METTLER TOLEDO (2013). https://www.mt.com/dam/LabDiv/guides-glen/ta-polymer/TA_Polymers_Selected_Apps_EN.pdf. Accessed 18 Oct 2019

  25. Corradini, P., Napolitano, R., Oliva, L., et al.: A possible structural interpretation of the two DSC melting peaks of isotactic polypropylene in the α-modification. Die Makromolekulare Chemie Rapid Commun. 3, 753–756 (2003)

    Article  Google Scholar 

  26. Broda, J.: Nucleating activity of the quinacridone and phthalocyanine pigments in polypropylene crystallization. J. Appl. Polym. Sci. 90, 3957–3964 (2003)

    Article  Google Scholar 

  27. Broda, J., Slusarczyk, C., Fabia, J., Demsar, A.: Formation and properties of polypropylene/stearic acid composite fibers. Text. Res. J. 86, 64–71 (2015)

    Article  Google Scholar 

  28. Libster, D., Aserin, A., Garti, N.: Advanced nucleating agents for polypropylene. Polym. Adv. Technol. 18, 685–695 (2007)

    Article  Google Scholar 

  29. Raka, L., Bogoeva-Gaceva, G.: Crystallization of polypropylene: application of differential scanning calorimetry part II. Crystal forms and nucleation. Contrib. Sec. Math. Tech. Sci 29, 69–87 (2017)

    Google Scholar 

  30. Ehrenstein, G.W.: Polymeric Materials: Structure, Properties, Applications (2001)

    Google Scholar 

  31. Burgt, F.: Crystallization of isotactic polypropylene: the influence of stereo-defects. Technische Universiteit Eindhoven, Eindhoven (2002)

    Google Scholar 

  32. Romuald, A., Chapuis, R., Chausse, F.: A model-driven approach for real-time road recognition. Mach. Vis. Appl. 13, 95–107 (2001)

    Article  Google Scholar 

  33. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  34. Lemeshko, B.Y.: Errors When Using Nonparametric Fitting Criteria. Meas. Tech+ 47, 134–142 (2004)

    Article  Google Scholar 

  35. Werman, M., Keren, D.: A Bayesian method for fitting parametric and nonparametric models to noisy data. IEEE T Pattern Anal. 23, 528–534 (2001)

    Article  Google Scholar 

  36. Kaw, A., Jai, P.: Spline Interpolation Method. University of South Florida, Tampa, US (2004). https://player.slideplayer.com/32/9859535/. Accessed 18 Oct 2019

  37. Pislaru, C., Shebani, A.: Identification of nonlinear systems using radial basis function neural network. Int. J. Comput. Inf. Syst. Control Eng. 8, 1528–1533 (2014)

    Google Scholar 

  38. Wood, S., Kohn, R., Shively, T., Jiang, W.: Model selection in spline nonparametric regression. J. R. Stat. Soc. B 64, 119–139 (2002)

    Article  MathSciNet  Google Scholar 

  39. Lukas, M.A., De Hoog, F.R., Anderssen, R.S.: Efficient algorithms for robust generalized cross-validation spline smoothing. J. Comput. Appl. Math. 235, 102–107 (2010)

    Article  MathSciNet  Google Scholar 

  40. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  Google Scholar 

  41. Shi, F., Wang, X.C., Yu, L., Li, Y.: MATLAB 30 Case Analysis of MATLAB Neural Network. Beijing University Press, Beijing, China (2009)

    Google Scholar 

Download references

Acknowledgements

This research work has been supported by the Slovak Scientific Grant Agency project VEGA 1/0589/17, Slovak grant project KEGA 002TnUAD-4/2019, by the research and development project MSMT-15304/2017-1, the INTER-EXCELLENCE programme “European Anthroposphere as a Source of Raw Materials” LTC 17051 and by the project “Centre for quality testing and diagnostics of materials—CEDITEK”, ITMS code 26210120046 relating to the Operational Program Research and project Advancement and support of R&D for “Centre for diagnostics and quality testing of materials in the domains of the RIS3 SK specialization”, code NFP313010W442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Labaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krmelová, V. et al. (2020). A Study of the Effect of the Quinacridone Pigment Content and Storage Time on the Process of Crystallization of Pre-oriented Polypropylene/Quinacridone Fibres. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications III. Advanced Structured Materials, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-030-39062-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39062-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39061-7

  • Online ISBN: 978-3-030-39062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics