Skip to main content

Numerical Investigation on the Influence of Doping on Tensile Properties of Carbon Nanotubes

  • Chapter
  • First Online:
Engineering Design Applications III

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 124))

  • 975 Accesses

Abstract

In this chapter, to investigate the tensile behavior of CNTs, finite element models of single-walled carbon nanotubes (SWCNTs) in perfect and doped modes for common types of carbon nanotube (CNT) configuration, i.e., the armchair, zigzag, and chiral models, were generated using a commercial finite element software (MSC Marc). To create the computational models, nodes were placed at the locations of carbon atoms and the bonds between them were modeled using three-dimensional elastic generalized beam elements. Doped models were simulated by three different heteroatoms including silicon, nitrogen, and boron separately with the doping concentration ranging from 0 to 5%. Young’s moduli of all models were obtained and compared with the perfect structures. The results indicated that Young’s modulus of chiral SWCNTs is larger than the moduli of the armchair and zigzag SWCNTs in all models and incorporating the silicon and boron atoms into CNT led to a linear reduction in Young’s modulus which was most significant for silicon and less noticeable for boron. Regarding nitrogen doping, a different trend was observed that was a negligible and less conspicuous increment in the value of Young’s modulus by increasing the percentage of doping. Besides, this behavior was the same for all armchair, zigzag, and chiral configurations with the same dopant atom. The investigations also revealed that the structural irregularity and ripples, which are induced by dopant atoms, are a key factor which influences the tensile behavior of CNTs. Our results for Young’s modulus of doped CNTs are in good agreement with recent investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  3. Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B Eng. 36, 468–477 (2005)

    Article  Google Scholar 

  4. Chua, M., Chui, C.-K., Chng, C.-B., et al.: Carbon nanotube-based artificial tracheal prosthesis: carbon nanocomposite implants for patient-specific ENT care. IEEE Nanotechnol. Mag. 7, 27–31 (2013)

    Article  Google Scholar 

  5. Ketabi, S., Rahmani, L.: Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: a computer simulation study. Mater. Sci. Eng., C 73, 173–181 (2017)

    Article  Google Scholar 

  6. Arunachalam, S., Gupta, A., Izquierdo, R., et al.: Suspended carbon nanotubes for humidity sensing. IEEE Sens. 18, 1655 (2018)

    Article  Google Scholar 

  7. Kumar, S., Nehra, M., Kedia, D., et al.: Carbon nanotubes: a potential material for energy conversion and storage. Prog. Energy Combust. Sci. 64, 219–253 (2018)

    Article  Google Scholar 

  8. Puett, C., Inscoe, C., Hartman, A., et al.: An update on carbon nanotube-enabled X-ray sources for biomedical imaging. WIREs Nanomed Nanobiotechnol 10, e1475 (2018)

    Article  Google Scholar 

  9. Sun, Y., Yun, K.N., Leti, G., et al.: High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler. Nanotechnology 28, 065201 (2017)

    Article  Google Scholar 

  10. Zhao, T., Ji, X., Jin, W., et al.: Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge. Fullerenes, Nanotubes, Carbon Nanostruct. 25, 355–358 (2017)

    Article  Google Scholar 

  11. Xu, J.-L., Dai, R.-X., Xin, Y., et al.: Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using decamethylcobaltocene. Sci. Rep.-UK 7, 6751 (2017)

    Article  Google Scholar 

  12. Choi, J., Park, B.C., Ahn, S.J., et al.: Evaluation of carbon nanotube probes in critical dimension atomic force microscopes. J Micro/Nanolithogr. MEMS MOEMS 15, 034005 (2016)

    Article  Google Scholar 

  13. Prabhu, S., Bhaumik, S., Vinayagam, B.K.: Finite element modeling and analysis of zigzag and armchair type single wall carbon nanotube. J. Mech. Eng. Res. 4(8), 260–266 (2012)

    Google Scholar 

  14. Rahman, G., Najaf, Z., Mehmood, A., et al.: An overview of the recent progress in the synthesis and applications of carbon nanotubes. C 5(1), 3 (2019)

    Google Scholar 

  15. Okamoto, S., Ito, A.: Investigation of mechanical properties of nitrogen-containing graphene using molecular dynamics simulations. Lect. Notes Eng. Comput. Sci. 1, 350–355 (2012)

    Google Scholar 

  16. Koós, A.A., Dillon, F., Obraztsova, E.A., et al.: Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon 48, 3033–3041 (2010)

    Article  Google Scholar 

  17. Bian, R., Zhao, J., Fu, H.: Silicon–doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity. J. Mol. Model. 19, 1667–1675 (2013)

    Article  Google Scholar 

  18. Cho, J.H., Yang, S.J., Lee, K., et al.: Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int. J. Hydrogen Energy 36, 12286–12295 (2011)

    Article  Google Scholar 

  19. Ayala, P., Arenal, R., Rümmeli, M., et al.: The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575–586 (2010)

    Article  Google Scholar 

  20. Tsierkezos, N.G., Othman, S.H., Ritter, U.: Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing. Ionics 19, 1897–1905 (2013)

    Article  Google Scholar 

  21. Terrones, M., Filho, A.G.S., Rao, A.M.: Doped carbon nanotubes: synthesis, characterization and applications. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes. Topics in Applied Physics, vol. 111. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  22. Ewels, C., Glerup, M., Krstic, V.: Nitrogen and boron doping in carbon nanotubes. In: Basiuk, V.A., Basiuk, E.V. (eds.) Chemistry of Carbon Nanotubes, pp. 1–82. American Scientific Publishers (2007)

    Google Scholar 

  23. Chien, S.-K., Yang, Y.-T., Chen, C.-K.: The effects of vacancy defects and nitrogen doping on the thermal conductivity of armchair (10, 10) single-wall carbon nanotubes. Solid State Commun. 151, 1004–1008 (2011)

    Article  Google Scholar 

  24. Wang, Z., Jia, R., Zheng, J., et al.: Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5, 1677–1684 (2011)

    Article  Google Scholar 

  25. Saloni, J., Kolodziejczyk, W., Roszak, S., et al.: Local and global electronic effects in single and double boron-doped carbon nanotubes. J. Phys. Chem. C 114, 1528–1533 (2010)

    Article  Google Scholar 

  26. Zhang, Y., Zhang, J., Su, D.S.: Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications. Chemsuschem 7, 1240–1250 (2014)

    Article  Google Scholar 

  27. Yang, L., Jiang, S., Zhao, Y., et al.: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Edit. 50, 7132–7135 (2011)

    Article  Google Scholar 

  28. Cheng, Y., Tian, Y., Fan, X., et al.: Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reaction in alkaline media. Electrochim. Acta 143, 291–296 (2014)

    Article  Google Scholar 

  29. Zhou, Y., Pervin, F., Lewis, L., et al.: Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng., A 452–453, 657–664 (2007)

    Article  Google Scholar 

  30. Liu, W.K., Karpov, E.G., Zhang, S., et al.: An introduction to computational nanomechanics and materials. Comput. Method Appl. Mech. Eng. 193, 1529–1578 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao, Z., Zhu, C.-C., Cheng, M., et al.: Mechanical properties of carbon nanotube by molecular dynamics simulation. Comput. Mater. Sci. 22, 180–184 (2001)

    Article  Google Scholar 

  32. Giannopoulos, G.I., Kakavas, P.A., Anifantis, N.K.: Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Comput. Mater. Sci. 41, 561–569 (2008)

    Article  Google Scholar 

  33. Lau, K.-T., Chipara, M., Ling, H.-Y., et al.: On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Compos. Part B-Eng. 35, 95–101 (2004)

    Article  Google Scholar 

  34. Robertson, J.: Mechanical properties and coordinations of amorphous carbons. Phys. Rev. Lett. 68, 220–223 (1992)

    Article  Google Scholar 

  35. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  36. Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  37. Krishnan, A., Dujardin, E., Ebbesen, T.W., et al.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  38. Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  39. Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42, 39–45 (2004)

    Article  Google Scholar 

  40. WenXing, B., ChangChun, Z., WanZhao, C.: Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys. B 352, 156–163 (2004)

    Article  Google Scholar 

  41. Kalamkarov, A.L., Georgiades, A.V., Rokkam, S.K., et al.: Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43, 6832–6854 (2006)

    Article  MATH  Google Scholar 

  42. Ávila, A.F., Lacerda, G.S.R.: Molecular mechanics applied to single-walled carbon nanotubes. Mater Res 11, 325–333 (2008)

    Article  Google Scholar 

  43. Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)

    Article  Google Scholar 

  44. Zakeri, M., Shayanmehr, M.: On the mechanical properties of chiral carbon nanotubes. J. Ultrafine Grained Nanostruct. Mater. 46, 1–9 (2013)

    Google Scholar 

  45. Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., et al.: Mechanical characterization of single-walled carbon nanotubes: numerical simulation study. Compos. Part B Eng. 75, 73–85 (2015)

    Article  Google Scholar 

  46. Song, H.-Y., Sun, H.-M., Zhang, G.-X.: Molecular dynamics study of effects of Si-doping upon structure and mechanical properties of carbon nanotube. Commun. Theor. Phys. 45, 741–744 (2006)

    Article  Google Scholar 

  47. Chandra, N., Namilae, S.: Tensile and compressive behavior of carbon nanotubes: effect of functionalization and topological defects. Mech. Adv. Mater. Struct. 13, 115–127 (2006)

    Article  Google Scholar 

  48. Rahmandoust, M., Öchsner, A.: Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J. Nano Res. 6, 185–196 (2009)

    Article  Google Scholar 

  49. Mortazavi, B., Ahzi, S., Toniazzo, V., et al.: Nitrogen doping and vacancy effects on the mechanical properties of graphene: a molecular dynamics study. Phys. Lett. A 376, 1146–1153 (2012)

    Article  Google Scholar 

  50. Ghavamian, A., Rahmandoust, M., Öchsner, A.: A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 62, 110–116 (2012)

    Article  Google Scholar 

  51. Ghavamian, A., Öchsner, A.: Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes. Physica E 46, 241–249 (2012)

    Article  Google Scholar 

  52. Mortazavi, B., Ahzi, S.: Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Commun. 152, 1503–1507 (2012)

    Article  Google Scholar 

  53. Fakhrabadi, M.M.S., Allahverdizadeh, A., Norouzifard, V., et al.: Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes. Solid State Commun. 152, 1973–1979 (2012)

    Article  Google Scholar 

  54. Zheng, Q., Li, Z., Yang, J.: Effects of N doping and NH 2 grafting on the mechanical and wrinkling properties of graphene sheets. RSC Adv. 3, 923–929 (2013)

    Article  Google Scholar 

  55. Milowska, K.Z., Woińska, M., Wierzbowska, M.: Contrasting elastic properties of heavily B- and N-doped graphene with random impurity distributions including aggregates. J. Phys. Chem. C 117, 20229–20235 (2013)

    Article  Google Scholar 

  56. Han, T., Luo, Y., Wang, C.: Effects of SI, N and B doping on the mechanical properties of graphene sheets. Acta Mech. Solida Sin. 28, 618–625 (2015)

    Article  Google Scholar 

  57. Xia, K., Zhan, H., Wei, Y., et al.: Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure. Beilstein J. Nanotechnol. 5, 329–336 (2014)

    Article  Google Scholar 

  58. Beckert, M., Tölle, F.J., Bruchmann, B., et al.: Nitrogen-doped multilayer graphene as functional filler for carbon/polyamide 12 nanocomposites. Macromol. Mater. Eng. 300, 785–792 (2015)

    Article  Google Scholar 

  59. Park, O.K., Kim, H.J., Hwang, J.Y., et al.: Effects of nitrogen doping from pyrolyzed ionic liquid in carbon nanotube fibers: enhanced mechanical and electrical properties. Nanotechnology 26, 75706 (2015)

    Article  Google Scholar 

  60. Ghorbanfekr-Kalashami, H., Neek-Amal, M., Peeters, F.M.: N-doped graphene: polarization effects and structural properties. Phys. Rev. B 93, 174112 (2016)

    Article  Google Scholar 

  61. Ameri, A., Ajori, S., Ansari, R.: Elastic properties and fracture analysis of perfect and boron-doped C2N-h2D Using molecular dynamics simulation. Int. J. Nanosci. Nanotechnol. 15, 11–19 (2019)

    Google Scholar 

  62. Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.): Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  63. Sumpter, B.G., Huang, J., Meunier, V., et al.: A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants. Int. J. Quantum Chem. 109, 97–118 (2009)

    Article  Google Scholar 

  64. Odegard, G.: Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  65. Lei, X., Natsuki, T., Shi, J., et al.: Analysis of carbon nanotubes on the mechanical properties at atomic scale. J. Nanomater. 2011, 1–10 (2011)

    Article  Google Scholar 

  66. Rappe, A.K., Casewit, C.J., Colwell, K.S., et al.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  67. Rahmandoust, M., Öchsner, A.: On finite element modeling of single- and multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 12, 8129–8136 (2012)

    Article  Google Scholar 

  68. Imani Yengejeh, S., Kazemi, S.A., Öchsner, A.: Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: a review. Compos. Part B-Eng. 86, 95–107 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahani, V., Öchsner, A. (2020). Numerical Investigation on the Influence of Doping on Tensile Properties of Carbon Nanotubes. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications III. Advanced Structured Materials, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-030-39062-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39062-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39061-7

  • Online ISBN: 978-3-030-39062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics