Skip to main content

Adult ADHD: Future Directions for Practice and Research

  • Chapter
  • First Online:
The Burden of Adult ADHD in Comorbid Psychiatric and Neurological Disorders

Abstract

Pharmacotherapy with stimulants is a mainstay of treatment of ADHD, but it is still challenged by stigma around their use and also for potential side effects leading to their interruption. As the stigma surrounding ADHD, the first aim of future research should deepen the relationship between genotype and phenotype of adult ADHD and their relationship with treatment outcomes. In this context, there are interesting findings regarding some drug-responsive transcripts among differentially expressed genes (DEGs) that have been suggested as potential biomarkers able to predict response to ADHD drugs, and as potential targets for the development of treatments to improve specific dimensions of ADHD phenotype. However, it should be emphasized that while many of data have been collected on children and adolescents and using animal models, this kind of research in adults with ADHD is still in its infancy. This is not a trivial thing, considering the different trajectories of ADHD over the lifespan as well as the comorbidity profiles of child and adult ADHD that change and only partly overlap. Moreover, there are only a few studies on ADHD remitters and the predictive power/accuracy of currently identified biomarkers is individually low.

There is growing evidence suggesting the potential of ADHD medication to lead to some brain changes, which appear to be persistent even after treatment interruption. The long-term efficacy of ADHD pharmacological agents on behavioral as well as neuroplasticity in adults with ADHD is an area that merits further investigation. Indeed, more evidence will give insights on “the best duration” rather than a long-life treatment perspective in people with a neurodevelopmental disorder such as ADHD.

However, treatment using pharmacological agents alone may not be enough to relieve ADHD symptoms and induce satisfactory functional improvement. Given the consistent rate of nonresponse to treatment of psychiatric disorders, and also of ADHD, there is a compelling need to develop new and alternative treatment interventions in order to improve effectiveness of current treatment options by targeting residual symptoms. In this chapter, we discuss evidence up to date regarding the utility of noninvasive brain stimulation techniques (NIBS) considered as a promising new approach to reduce some ADHD dimensions of pathology. Furthermore, on the basis of growing knowledge regarding the role of inflammation and of the gut microbiota in the development of those pathophysiological mechanisms underlying many psychiatric disorders, we suggested them as new therapeutic targets for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kooij JJS, Bijlenga D, Salerno L, Jaeschke R, Bitter I, Balázs J, et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur Psychiatry. 2019;56:14–34. https://doi.org/10.1016/j.eurpsy.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  2. Kuntsi J, Pinto R, Price TS, van der Meere JJ, Frazier-Wood AC, Asherson P. The separation of ADHD inattention and hyperactivity-impulsivity symptoms: pathways from genetic effects to cognitive impairments and symptoms. J Abnorm Child Psychol. 2014;42(1):127–36. https://doi.org/10.1007/s10802-013-9771-7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Halperin JM, Schulz KP. Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychol Bull. 2006;132(4):560–81.

    Article  PubMed  Google Scholar 

  4. Halperin JM, Trampush JW, Miller CJ, Marks DJ, Newcorn JH. Neuropsychological outcome in adolescents/young adults with childhood ADHD: profiles of persisters, remitters and controls. J Child Psychol Psychiatry. 2008;49(9):958–66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dela Peña I, Dela Peña IJ, de la Peña JB, Kim HJ, Shin CY, Han DH, Kim BN, Ryu JH, Cheong JH. Methylphenidate and atomoxetine-responsive prefrontal cortical genetic overlaps in “impulsive” SHR/NCrl and wistar rats. Behav Genet. 2017;47(5):564–80. https://doi.org/10.1007/s10519-017-9861-3. Epub 2017 Jul 25.

    Article  PubMed  Google Scholar 

  6. Dela Peña I, Bang M, Lee J, de la Peña JB, Kim BN, Han DH, Noh M, Shin CY, Cheong J. Common prefrontal cortical gene expression profiles between adolescent SHR/NCrl and WKY/NCrl rats which showed inattention behavior. Behav Brain Res. 2015;291:268–76. https://doi.org/10.1016/j.bbr.2015.05.012. Epub 2015 Jun 3.

    Article  CAS  PubMed  Google Scholar 

  7. Franke B, Michelini G, Asherson P, Banaschewski T, Bilbow A, Buitelaar JK, Cormand B, et al. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur Neuropsychopharmacol. 2018;28(10):1059–88. https://doi.org/10.1016/j.euroneuro.2018.08.001. Epub 2018 Sep 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martel MM, Klump K, Nigg JT, Breedlove SM, Sisk CL. Potential hormonal mechanisms of attention-deficit/hyperactivity disorder and major depressive disorder: a new perspective. Horm Behav. 2009;55:465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang LJ, Chen CK. The potential role of neuroendocrine in patients with attention-deficit/hyperactivity disorder Submitted: May 30th 2012, Reviewed: September 20th 2012, Published: June 27th 2013. https://doi.org/10.5772/53609.

  10. Strous RD, Spivak B, Yoran-Hegesh R, Maayan R, Averbuch E, Kotler M, et al. Analysis of neurosteroid levels in attention deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2001;4:259–64.

    Article  CAS  PubMed  Google Scholar 

  11. Lee MS, Yang JW, Ko YH, Han C, Kim SH, Joe SH, et al. Effects of methylphenidate and bupropion on DHEA-S and cortisol plasma levels in attention-deficit hyperactivity disorder. Child Psychiatry Hum Dev. 2008;39:201–9.

    Article  PubMed  Google Scholar 

  12. Wang LJ, Huang YS, Hsiao CC, Chiang YL, Wu CC, Shang ZY, et al. Salivary dehydroepiandrosterone, but not cortisol, is associated with attention deficit hyperactivity disorder. World J Biol Psychiatry. 2011;12:99–109.

    Article  PubMed  Google Scholar 

  13. Clemow DB, Bushe CJ. Atomoxetine in patients with ADHD: a clinical and pharmacological review of the onset, trajectory, duration of response and implications for patients. J Psychopharmacol. 2015;29(12):1221–30. https://doi.org/10.1177/0269881115602489.

    Article  CAS  PubMed  Google Scholar 

  14. Lempp T, Toennes SW, Wunder C, et al. Altered gene expression in the prefrontal cortex of young rats induced by the ADHD drug atomoxetine. Progr Neuropsychopharmacol Biol Psychiatr. 2013;40:221–8.

    Article  CAS  Google Scholar 

  15. Udvardi PT, Föhr KJ, Henes C, et al. Atomoxetine affects transcription/translation of the NMDA receptor and the norepinephrine transporter in the rat brain: an in vivo study. Drug Des Devel Ther. 2013;7:1433–46.

    PubMed  PubMed Central  Google Scholar 

  16. Crawford CA, McDougall SA, Meier TL, Collins RL, Watson JB. Repeated methylphenidate treatment induces behavioral sensitization and decreases protein kinase A and dopamine-stimulated adenylyl cyclase activity in the dorsal striatum. Psychopharmacology. 1998;136:34–43.

    Article  CAS  PubMed  Google Scholar 

  17. McNamara CG, Davidson ES, Schenk S. A comparison of the motor-activating effects of acute and chronic exposure to amphetamine and methylphenidate. Pharmacol Biochem Behav. 1993;45:729–32.

    Article  CAS  PubMed  Google Scholar 

  18. Kuczenski R, Segal DS. Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci. 2002;22:7264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang G, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, et al. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder. PLoS One. 2013;8(5):1–6. https://doi.org/10.1371/journal.pone.0063023.

    Article  CAS  Google Scholar 

  20. Quansah E, Sgamma T, Jaddoa E, Zetterstrom TSC. Chronic methylphenidate regulates genes and proteins mediating neuroplasticity in the juvenile rat brain. Neurosci Lett. 2017;654:93–8. S0304-3940(17)30492-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  21. Quansah E, Zetterström TSC. Chronic methylphenidate preferentially alters catecholamine protein targets in the parietal cortex and ventral striatum. Neurochem Int. 2019;124:193–9. https://doi.org/10.1016/j.neuint.2019.01.016.

    Article  CAS  PubMed  Google Scholar 

  22. Cooper RE, Williams E, Seegobin S, Tye C, Kuntsi J, Asherson P. Cannabinoids in attention-deficit/hyperactivity disorder: a randomised-controlled trial. Eur Neuropsychopharmacol. 2017;27(8):795–808.

    Article  CAS  PubMed  Google Scholar 

  23. Davidson MA. Literature review: ADHD in adults: a review of the literature. J Atten Disord. 2008;11:628–41.

    Article  PubMed  Google Scholar 

  24. Chang Z, Lichtenstein P, Halldner L, et al. Stimulant ADHD medication and risk for substance abuse. J Child Psychol Psychiatry. 2014;55(8):878–85. https://doi.org/10.1111/jcpp.12164.

    Article  PubMed  Google Scholar 

  25. Daley D, Van der Oord S, Ferrin M, et al. Behavioral interventions in attention-deficit/hyperactivity disorder: a meta-analysis of randomized controlled trials across multiple outcome domains. J Am Acad Child Adolesc Psychiatry. 2014;53:835–47.

    Article  PubMed  Google Scholar 

  26. Cortese S, Ferrin M, Brandeis D, et al. Cognitive training for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials [published correction appears in J Am Acad Child Adolesc Psychiatry. 2015;54(5):433]. J Am Acad Child Adolesc Psychiatry. 2015;54(3):164–74. https://doi.org/10.1016/j.jaac.2014.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Melby-Lervåg M, Redick TS, Hulme C. Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: evidence from a meta-analytic review. Perspect Psychol Sci. 2016;11(4):512–34. https://doi.org/10.1177/1745691616635612.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Melby-Lervåg M, Hulme C. Is working memory training effective? A meta-analytic review. Dev Psychol. 2013;49:270–91. https://doi.org/10.1037/a0028228.

    Article  PubMed  Google Scholar 

  29. Pallanti S, Grassi G, Marras A, Hollander E. Can we modulate obsessive-compulsive networks with neuromodulation? J Psychopathol. 2015;21:262–5.

    Google Scholar 

  30. Bellamoli E, Manganotti P, Schwartz RP, et al. RTMS in the treatment of drug addiction: an update about human studies. Behav Neurol. 2014;2014:815215.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Barr MS, Farzan F, Rusjan PM, et al. Potentiation of gamma oscillatory activity through repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuropsychopharmacology. 2009;34:2359–67.

    Article  PubMed  Google Scholar 

  32. Barr MS, Farzan F, Rajji TK, et al. Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol Psychiatry. 2013;73:510–7.

    Article  PubMed  Google Scholar 

  33. de Jesus DR, Favalli GP, Hoppenbrouwers SS, et al. Determining optimal rTMS parameters through changes in cortical inhibition. Clin Neurophysiol. 2014;125:755–62.

    Article  PubMed  Google Scholar 

  34. Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hanlon CA, Dowdle LT, Austelle CW, et al. What goes up, can come down: novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res. 2015;1628:199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liew SL, Santamecchi E, Buch ER, Cohen LG. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci. 2014;8:378.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Impact of transcranial direct current stimulation on spinal network excitability in humans. J Physiol. 2009;587:5653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. J Physiol. 2011;589:2813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Effect of anodal tDCS on lumbar propriospinal system in healthy subjects. Clin Neurophysiol. 2012;123:1027–34.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu Y, Yang D, Ji W, et al. The relationship between neurocircuitry dysfunctions and attention deficit hyperactivity disorder: a review. Biomed Res Int. 2016;3821579, 7 p. https://doi.org/10.1155/2016/3821579.

  41. Aron AR, Cai W, Badre D, Robbins TW. Evidence supports specific braking function for inferior PFC. Trends Cogn Sci. 2015;19(12):711–2. https://doi.org/10.1016/j.tics.2015.09.001.

    Article  PubMed  Google Scholar 

  42. Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1285–92. https://doi.org/10.1016/j.biopsych.2004.10.026.

    Article  PubMed  Google Scholar 

  43. Chambers CD, Garavan H, Bellgrove MA. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev. 2009;33(5):631–46. https://doi.org/10.1016/j.neubiorev.2008.08.016.

    Article  PubMed  Google Scholar 

  44. Hwang S, Me H, Parsley I, Tyler PM, Erway AK, Botkin ML, et al. Segregating sustained attention from response inhibition in ADHD: an fMRI study. NeuroImage: Clin. 2019;21:101677. https://doi.org/10.1016/j.nicl.2019.101677.

    Article  Google Scholar 

  45. Massat I, Slama H, Kavec M, Linotte S, Mary A, Baleriaux D, et al. Working memory- related functional brain patterns in never medicated children with ADHD. PLoS One. 2012;7:e49392.

    Google Scholar 

  46. Fassbender C, Schweitzer JB, Cortes CR, Tagamets MA, Windsor TA, Reeves GM, et al. Working memory in attention deficit/hyperactivity disorder is characterized by a lack of specialization of brain function. PLoS One. 2011;6:e27240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bollmann S, Ghisleni C, Poil SS, Martin E, Ball J, Eich-Höchli D, et al. Age-dependent and-independent changes in attention-deficit/hyperactivity disorder (ADHD) during spatial working memory performance. World J Biol Psychiatry. 2017;18(4):279–90.

    Article  PubMed  Google Scholar 

  48. Noreika V, Falter CM, Rubia K. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia. 2013;51:235–66.

    Article  PubMed  Google Scholar 

  49. Hart H, Radua J, Mataix-Cols D, Rubia K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2012;36:2248–56.

    Article  PubMed  Google Scholar 

  50. Tripp G, Wickens JR. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in {ADHD}. J Child Psychol Psychiatry. 2008;49:691–704. https://doi.org/10.1111/j.1469-7610.2007.01851.x.

    Article  PubMed  Google Scholar 

  51. Luman M, Tripp G, Scheres A. Identifying the neurobiology of altered reinforcement sensitivity in ADHD: a review and research agenda. Neurosci Biobehav Rev. 2010;34:744–54. https://doi.org/10.1016/j.neubiorev.2009.11.021.

    Article  PubMed  Google Scholar 

  52. Costa Dias TG, Wilson VB, Bathula DR, Iyer S, Mills KL, Thurlow BL, et al. Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol. 2012;23:33–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev. 2014;38:125–34. https://doi.org/10.1016/j.neubiorev.2013.07.012.

    Article  PubMed  Google Scholar 

  54. Furukawa E, Bado P, Tripp G, Mattos P, Wickens JR, Bramati IE, et al. Abnormal striatal {BOLD} responses to reward anticipation and reward delivery in {ADHD}. PLoS One. 2014;9:e89129. https://doi.org/10.1371/journal.pone.0089129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marsh PJ, Williams LM. ADHD and schizophrenia phenomenology: visual scanpaths to emotional faces as a potential psychophysiological marker? Neurosci Biobehav Rev. 2006;30:651–65.

    Article  PubMed  Google Scholar 

  56. Ibáñez A, Petroni A, Urquina H, Torrente F, Torralva T, Hurtado E, et al. Cortical deficits of emotional face processing in adults with ADHD: its relation to social cognition and executive function. Soc Neurosci. 2011;6(5–6):464–81.

    Article  PubMed  Google Scholar 

  57. Uekermann J, Kraemer M, Abdel-Hamid M, Schimmelmann BG, Hebebrand J, Daum I. Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2010;34:734–43.

    Article  CAS  PubMed  Google Scholar 

  58. Makris N, Biederman J, Monuteaux MC, Seidman LJ. Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci. 2009;31(1-2):36–49. https://doi.org/10.1159/000207492.

  59. Salerno L, Makris N, Pallanti S. Sleep disorders in adult ADHD: a key feature. J Psychopathol. 2016;22(2):135–40.

    Google Scholar 

  60. Bradshaw JL, Mattingley JB. Clinical neuropsychology: behavioral and brain science. Amsterdam: Elsevier; 2013.

    Google Scholar 

  61. Owens J, Gruber R, Brown T, Corkum P, Cortese S, O’Brien L, Stein M, Weiss M. Future research directions in sleep and ADHD: report of a consensus working group. J Atten Disord. 2013;17:550–64.

    Article  PubMed  Google Scholar 

  62. Shaw P, Stringaris A, Nigg J, Leibenluft E. Emotion dysregulation in attention deficit hyperactivity disorder. Am J Psychiatry. 2014;171:276–93.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Koob GF. Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol. 2013;23(4):559–63. PubMed PMID: 23628232.

    Article  CAS  PubMed  Google Scholar 

  64. Seeman P. Parkinson’s disease treatment may cause impulse control disorder via dopamine D3 receptors. Synapse. 2015;69(4):183–9. PubMed PMID: 25645960.

    Article  CAS  PubMed  Google Scholar 

  65. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):829, 833–57. PubMed PMID: 18574483; PubMed Central PMCID: PMCPMC2745893.

    Google Scholar 

  66. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10(3):318–25. PubMed PMID: 10731226.

    Article  CAS  PubMed  Google Scholar 

  67. Cortese S, Kelly C, Chabernaud C, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am Psychiatry. 2012;169(10):1038–55. PubMed PMID: 22983386; PubMed Central PMCID: PMCPMC3879048.

    Article  Google Scholar 

  68. Hart H, Radua J, Nakao T, et al. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70(2):185–98. PubMed PMID: 23247506.

    Article  PubMed  Google Scholar 

  69. Gilbert DL, Ridel KR, Sallee FR, Zhang J, Lipps TD, Wassermann EM. Comparison of the inhibitory and excitatory effects of ADHD medications methylphenidate and atomoxetine on motor cortex. Neuropsychopharmacology. 2006;31:442–9. https://doi.org/10.1038/sj.npp.1300806.

    Article  CAS  PubMed  Google Scholar 

  70. Kratz O, Diruf MS, Studer P, Gierow W, Buchmann J, Moll GH, Heinrich H. Effects of methylphenidate on motor system excitability in a response inhibition task. Behav Brain Funct. 2009;5:12. https://doi.org/10.1186/1744-9081-5-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cepeda NJ, Cepeda ML, Kramer AF. Task switching and attention deficit hyperactivity disorder. J Abnorm Child Psychol. 2000;28:213–26. https://doi.org/10.1023/A:1005143419092.

    Article  CAS  PubMed  Google Scholar 

  72. Sonuga-Barke EJS. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry. 2005;57:1231–8. https://doi.org/10.1016/j.biopsych.2004.09.008.

    Article  PubMed  Google Scholar 

  73. Finisguerra A, Borgatti R, Urgesi C. Non-invasive brain stimulation for the rehabilitation of children and adolescents with neurodevelopmental disorders: a systematic review. Front Psychol. 2019;10:135. https://doi.org/10.3389/fpsyg.2019.00135.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Helfrich C, Pierau SS, Freitag CM, Roeper J, Ziemann U, Bender S. Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study. PLoS One. 2012;7:e50073. https://doi.org/10.1371/journal.pone.0050073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casula EP, Tarantino V, Basso D, Arcara G, Marino G, Toffolo GM, et al. Low-frequency rTMS inhibitory effects in the primary motor cortex: insights from TMS-evoked potentials. NeuroImage. 2014;98:225–32. https://doi.org/10.1016/j.neuroimage.2014.04.065.

    Article  PubMed  Google Scholar 

  76. Gómez L, Vidal B, Morales L, Báez M, Maragoto C, Galvizu R, et al. Low frequency repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder. preliminary results. Brain Stimul. 2014;7:760–2. https://doi.org/10.1016/j.brs.2014.06.001.

    Article  PubMed  Google Scholar 

  77. Bloch Y, Harel EV, Aviram S, et al. Positive effects of repetitive transcranial magnetic stimulation on attention in ADHD Subjects: a randomized controlled pilot study. World J Biol Psychiatry. 2010;11:755–8.

    Article  CAS  PubMed  Google Scholar 

  78. Weaver L, Rostain AL, Mace W, Akhtar U, Moss E, O’Reardon JP. Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: a pilot study. J ECT. 2012;28(2):98–103. https://doi.org/10.1097/YCT.0b013e31824532c8.

    Article  PubMed  Google Scholar 

  79. Niederhofer H. Effectiveness of the repetitive Transcranical Magnetic Stimulation (rTMS) of 1 Hz for Attention-Deficit Hyperactivity Disorder (ADHD). Psychiatr Danub. 2008;20(1):91–2.

    PubMed  Google Scholar 

  80. Paz Y, Friedwald K, Levkovitz Y, Zangen A, Alyagon U, Nitzan U, Segev A, Maoz H, Koubi M, Bloch Y. Randomised sham-controlled study of high-frequency bilateral deep transcranial magnetic stimulation (dTMS) to treat adult attention hyperactive disorder (ADHD): negative results. World J Biol Psychiatry. 2018;19(7):561–6. https://doi.org/10.1080/15622975.2017.1282170. Epub 2017 Jan 31.

    Article  PubMed  Google Scholar 

  81. Pogarell O, Koch W, Pöpperl G, et al. Acute prefrontal rTMS increases striatal dopamine to a similar degree as d-amphetamine. Psychiatry Res. 2007;156:251–5.

    Article  CAS  PubMed  Google Scholar 

  82. Pogarell O, Koch W, Pöpperl G, et al. Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J Psychiatr Res. 2006;40:307–14.

    Article  PubMed  Google Scholar 

  83. Monte-Silva K, Ruge D, Teo JT, et al. D2 receptor block abolishes θ burst stimulation-induced neuroplasticity in the human motor cortex. Neuropsychopharmacology. 2011;36:2097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dunlop K, Hanlon CA, Downar J. Noninvasive brain stimulation treatments for addiction and major depression. Ann N Y Acad Sci. 2017;1394(1):31–54. https://doi.org/10.1111/nyas.12985.

    Article  PubMed  Google Scholar 

  85. Cho SS, Kosimori Y, Aminian K, et al. Investing in the future: stimulation of the medial prefrontal cortex reduces discounting of delayed rewards. Neuropsychopharmacology. 2015;40:546–53.

    Article  CAS  PubMed  Google Scholar 

  86. Benatti B, Cremaschi L, Oldani L, De Cagna F, Dell’Osso B. Past, present and future of transcranial magnetic stimulation (TMS) in the treatment of psychiatric disorders. Evidence-based Psychiatric Care. 2016;2;77–85.

    Google Scholar 

  87. Buchmann J, Gierow W, Weber S, et al. Restoration of disturbed intracortical motor inhibition and facilitation in attention deficit hyperactivity disorder children by methylphenidate. Biol Psychiatry. 2007;62(9):963–9. https://doi.org/10.1016/j.biopsych.2007.05.010. [PubMed] [Google Scholar].

    Article  CAS  PubMed  Google Scholar 

  88. Gilbert DL, Isaacs KM, Augusta M, Macneil LK, Mostofsky SH. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology. 2011;76(7):615–21. https://doi.org/10.1212/WNL.0b013e31820c2ebd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gilbert DL, Bansal AS, Sethuraman G, et al. Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome. Mov Disord. 2004;19(4):416–25. https://doi.org/10.1002/mds.20044.

    Article  PubMed  Google Scholar 

  90. Gilbert DL, Sallee FR, Zhang J, Lipps TD, Wassermann EM. Transcranial magnetic stimulation-evoked cortical inhibition: a consistent marker of attention-deficit/hyperactivity disorder scores in Tourette syndrome. Biol Psychiatry. 2005;57(12):1597–600. https://doi.org/10.1016/j.biopsych.2005.02.022.

    Article  PubMed  Google Scholar 

  91. Rubio B, Boes AD, Laganiere S, Rotenberg A, Jeurissen D, Pascual-Leone A. Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review. J Child Neurol. 2016;31(6):784–96. https://doi.org/10.1177/0883073815615672.

    Article  PubMed  Google Scholar 

  92. Ruge D, Muggleton N, Hoad D, Caronni A, Rothwell JC. An unavoidable modulation? Sensory attention and human primary motor cortex excitability. Eur J Neurosci. 2014;40(5):2850–8. https://doi.org/10.1111/ejn.12651.

    Article  PubMed  Google Scholar 

  93. Orth M, Rothwell JC. Motor cortex excitability and co-morbidity in Gilles de la Tourette syndrome. J Neurol Neurosurg Psychiatry. 2009;80(1):29–34. https://doi.org/10.1136/jnnp.2008.149484.

    Article  CAS  PubMed  Google Scholar 

  94. Moll GH, Heinrich H, Trott G, Wirth S, Rothenberger A. Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett. 2000;284(1–2):121–5. https://doi.org/10.1016/S0304-3940(00)00980-0.

    Article  CAS  PubMed  Google Scholar 

  95. Buchmann J, Wolters A, Haessler F, Bohne S, Nordbeck R, Kunesch E. Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD). Clin Neurophysiol. 2003;114:2036–42. https://doi.org/10.1016/S1388-2457(03)00208-6. http://www.ncbi.nlm.nih.gov/pubmed/14580601. Accessed 24 Apr 2015.

    Article  CAS  PubMed  Google Scholar 

  96. Buchmann J, Gierow W, Weber S, et al. Modulation of transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD) by medication with methylphenidate (MPH). Neurosci Lett. 2006;405(1–2):14–8. https://doi.org/10.1016/j.neulet.2006.06.026.

    Article  CAS  PubMed  Google Scholar 

  97. Garvey MA, Barker CA, Bartko JJ, et al. The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2005;116(8):1889–96. https://doi.org/10.1016/j.clinph.2005.03.018.

    Article  PubMed  Google Scholar 

  98. Hoeppner J, Wandschneider R, Neumeyer M, et al. Impaired transcallosally mediated motor inhibition in adults with attention-deficit/hyperactivity disorder is modulated by methylphenidate. J Neural Transm. 2008;115(5):777–85. https://doi.org/10.1007/s00702-007-0008-1.

    Article  CAS  PubMed  Google Scholar 

  99. Walther M, Berweck S, Schessl J, et al. Maturation of inhibitory and excitatory motor cortex pathways in children. Brain and Development. 2009;31(7):562–7. https://doi.org/10.1016/j.braindev.2009.02.007.

    Article  PubMed  Google Scholar 

  100. Bortoletto M, Veniero D, Thut G, Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev. 2014;49C:114–24. https://doi.org/10.1016/j.neubiorev.2014.12.014.

    Article  Google Scholar 

  101. Sotnikova A, Soff C, Tagliazucchi E, et al. Transcranial direct current stimulation modulates neuronal networks in attention deficit hyperactivity disorder. Brain Topogr. 2017;30(5):656–72.

    Article  PubMed  Google Scholar 

  102. Nejati V, Salehinejad MA, Nitsche MA, et al. Transcranial direct current stimulation improves executive dysfunctions in ADHD: implications for inhibitory control, interference control, working memory, and cognitive flexibility. J Atten Disord. 2017;1:1087054717730611.

    Google Scholar 

  103. Soltaninejad Z, Nejati V, Ekhtiari H. Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. J Atten Disord. 2015;23(4):325–32.

    Article  PubMed  Google Scholar 

  104. Breitling C, Zaehle T, Dannhauer M, et al. Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Front Cell Neurosci. 2016;10:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bandeira ID, Guimarães RS, Jagersbacher JG, et al. Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study. J Child Neurol. 2016;31(7):918–24.

    Article  PubMed  Google Scholar 

  106. Soff C, Sotnikova A, Christiansen H, Becker K. Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. J Neural Transm (Vienna). 2017;124(1):133–44. https://doi.org/10.1007/s00702-016-1646-y.

    Article  Google Scholar 

  107. Cachoeira CT, Leffa DT, Mittelstadt SD, et al. Positive effects of transcranial direct current stimulation in adult patients with attention-deficit/hyperactivity disorder—a pilot randomized controlled study. Psychiatry Res. 2017;247:28–32.

    Article  PubMed  Google Scholar 

  108. Allenby C, Falcone M, Bernardo L, Wileyto EP, Rostain A, Ramsay JR, Lerman C, Loughead J. Transcranial direct current brain stimulation decreases impulsivity in ADHD. Brain Stimul. 2018;11(5):974–81. https://doi.org/10.1016/j.brs.2018.04.016. Epub 2018 Apr 23.

  109. Cosmo C, Baptista AF, de Araújo AN, et al. A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention-deficit/hyperactivity disorder. PLoS One. 2015;10(8):e0135371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Elmasry J, Loo C, Martin D. A systematic review of transcranial electrical stimulation combined with cognitive training. Restor Neurol Neurosci. 2015;33(3):263–78.

    PubMed  Google Scholar 

  111. Martin DM, Liu R, Alonzo A, et al. Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Exp Brain Res. 2014;232(10):3345–51.

    Article  PubMed  Google Scholar 

  112. Oliveira JF, Zanão TA, Valiengo L, Lotufo PA, Benseñor IM, Fregni F, Brunoni AR. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder. Neurosci Lett. 2013;537:60–4. https://doi.org/10.1016/j.neulet.2013.01.023. Epub 2013 Jan 28.

  113. Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.

    Article  CAS  PubMed  Google Scholar 

  114. Utz KS, Dimova V, Oppenlander K, et al. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia. 2010;48:2789–810.

    Article  PubMed  Google Scholar 

  115. Eldaief MC, Halko MA, Buckner RL, Pascual-Leone A. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Proc Natl Acad Sci U S A. 2011;108:21229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;7:468–75.

    Article  PubMed  Google Scholar 

  117. Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67. https://doi.org/10.1111/nyas.13712.

    Article  CAS  PubMed  Google Scholar 

  118. Fond G. Inflammation in psychiatric disorders. Eur Psychiatry. 2014;29:551–2.

    Article  Google Scholar 

  119. Instanes JT, Klungsoyr K, Halmoy A, Fasmer OB, Haavik J. Adult ADHD and comorbid somatic disease: a systematic literature review. J Atten Disord. 2018;22(3):203–28. https://doi.org/10.1177/1087054716669589.

    Article  PubMed  Google Scholar 

  120. Nielsen PR, Benros ME, Dalsgaard S. Associations between autoimmune diseases and attention-deficit/hyperactivity disorder: a Nationwide Study. J Am Acad Child Adolesc Psychiatry. 2017;56(3):234–240.e1. https://doi.org/10.1016/j.jaac.2016.12.010.

    Article  PubMed  Google Scholar 

  121. Chen MH, Su TP, Chen YS, Hsu JW, Huang KL, Chang WH, Chen TJ, Bai YM. Comorbidity of allergic and autoimmune diseases among patients with ADHD. J Atten Disord. 2017;21(3):219–27. https://doi.org/10.1177/1087054712474686.

    Article  PubMed  Google Scholar 

  122. Butwicka A, Lichtenstein P, Frisen L, Almqvist C, Larsson H, Ludvigsson JF. Celiac disease is associated with childhood. 2017. https://doi.org/10.1016/j.jpeds.2017.01.043; https://doi.org/10.1016/j.eurpsy.2014.09.347.

  123. Instanes JT, Halmoy A, Engeland A, Haavik J, Furu K, Klungsoyr K. Attention-deficit/hyperactivity disorder in offspring of mothers with inflammatory and immune system diseases. Biol Psychiatry. 2017;81(5):452–9. https://doi.org/10.1016/j.biopsych.2015.11.024.

    Article  PubMed  Google Scholar 

  124. Butwicka A, Frisén L, Almqvist C, Zethelius B, Lichtenstein P. Risks of psychiatric disorders and suicide attempts in children and adolescents with type 1 diabetes: a population-based cohort study [published correction appears in Diabetes Care. 2016;39(3):495]. Diabetes Care. 2015;38(3):453–9. https://doi.org/10.2337/dc14-0262.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Misener VL, Schachar R, Ickowicz A, Malone M, Roberts W, Tannock R, et al. Replication test for association of the IL-1 receptor antagonist gene, IL1RN, with attention-deficit/hyperactivity disorder. Neuropsychobiology. 2004;50(3):231–4. https://doi.org/10.1159/000079976.

    Article  CAS  PubMed  Google Scholar 

  126. Lasky-Su J, Anney RJ, Neale BM, Franke B, Zhou K, Maller JB, et al. Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1355–8. https://doi.org/10.1002/ajmg.b.30869.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1345–54. https://doi.org/10.1002/ajmg.b.30867.

    Article  CAS  PubMed  Google Scholar 

  128. Oades RD, Dauvermann MR, Schimmelmann BG, Schwarz MJ, Myint AM. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism—effects of medication. Behav Brain Funct. 2010;6:29. https://doi.org/10.1186/1744-9081-6-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oades RD, Myint AM, Dauvermann MR, Schimmelmann BG, Schwarz MJ. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: an exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav Brain Funct. 2010;6:32. https://doi.org/10.1186/1744-9081-6-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oades RD. An exploration of the associations of pregnancy and perinatal features with cytokines and tryptophan/kynurenine metabolism in children with attention-deficit hyperactivity disorder (ADHD). Atten Defic Hyperact Disord. 2011;3(4):301–18. https://doi.org/10.1007/s12402-011-0062-2.

    Article  PubMed  Google Scholar 

  131. Ribases M, Hervas A, Ramos-Quiroga JA, Bosch R, Bielsa A, Gastaminza X, et al. Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63(10):935–45. https://doi.org/10.1016/j.biopsych.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  132. Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): new facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015;26(5):507–15. https://doi.org/10.1016/j.cytogfr.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  133. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297–306. https://doi.org/10.1002/da.22084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mahadik SP, Mukherjee S. Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res. 1996;19:1–17.

    Article  CAS  PubMed  Google Scholar 

  135. Mukherjee S, Mahadik SP, Scheffer R, Correnti EE, Kelkar H. Impaired antioxidant defense at the onset of psychosis. Schizophr Res. 1996;19:19–26.

    Article  Google Scholar 

  136. Kul M, Unal F, Kandemir H, Sarkarati B. Evaluation of oxidative metabolism in child and adolescent patients with attention deficit hyperactivity disorder. 2015;12(3):361–6. https://doi.org/10.4306/pi.2015.12.3.361.

  137. Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev. 2007;17:39–59.

    Article  PubMed  Google Scholar 

  138. Annelies V, Harry R, Ines W, Annelies B, Tess DB, Nina H. Evaluation of biomarkers of oxidative stress in attention-deficit/hyperactivity disorder (ADHD). J Mol Biomarkers. 2018;9. https://doi.org/10.4172/2155-9929.

  139. Scassellati C, Bonvicini C, Faraone SV, Gennarelli M. Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2012;51:1003–19.

    Article  PubMed  Google Scholar 

  140. Arnold LE, DiSilvestro RA. Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2005;15:619–27.

    Article  PubMed  Google Scholar 

  141. Arnold LE, Bozzolo H, Hollway J, Cook A, Di-Silvestro RA, et al. Serum zinc correlates with parent- and teacher-rated inattention in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2005;15:628–36.

    Article  PubMed  Google Scholar 

  142. Arnold LE, Hurt E, Lofthouse N. Attention-deficit/hyperactivity disorder: dietary and nutritional treatments. Child Adolesc Psychiatr Clin N Am. 2013;22:381–402.

    Article  PubMed  Google Scholar 

  143. Sun GX, Wang BH, Zhang YF. Relationship between serum zinc levels and attention deficit hyperactivity disorder in children. (Abstract in English). Zhonggua Dang Dai Er Ke Za Zjo. 2015;17:980–3.

    CAS  Google Scholar 

  144. Sever Y, Ashkenazi A, Tyano S, Weizman A. Iron treatment in children with attention deficit hyperactivity disorder. A preliminary report. Neuropsychobiology. 1997;35:178–80.

    Article  CAS  PubMed  Google Scholar 

  145. Konofal E, Lecendreux M, Arnulf I, Mouren MC. Iron deficiency in children with attention-deficit/hyperactivity disorder. Arch Pediatr Adolesc Med. 2004;158:1113–5.

    Article  PubMed  Google Scholar 

  146. Konofal E, Lecendreux M, Deron J, Marchand M, Cortese S, et al. Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatr Neurol. 2008;38:20–6.

    Article  PubMed  Google Scholar 

  147. Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance of aDHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015;29:2207–22.

    Article  CAS  PubMed  Google Scholar 

  148. Goksugur SB, Tufan AE, Semiz M, Gunes C, Bekdas M, et al. Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatr Int. 2014;56:515–9.

    Article  CAS  PubMed  Google Scholar 

  149. Kamal M, Bener A, Ehlayel MS. Is high prevalence of vitamin D deficiency a correlate for attention deficit hyperactivity disorder? Atten Defic Hyperact Disord. 2014;6:73–8.

    Article  PubMed  Google Scholar 

  150. Meyer T, Becker A, Sundermann J, Rothenberger A, Herrmann-Lingen C. Attention deficit-hyperactivity disorder is associated with reduced blood pressure and serum vitamin D levels: results from the nationwide German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Eur Child Adolesc Psychiatry. 2017;26:165–75.

    Article  PubMed  Google Scholar 

  151. Bloch MH, Qawasmi A. Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2011;50:991–1000. https://doi.org/10.1016/j.jaac.2011.06.008. S0890-8567(11)00484-9 [pii]. [PubMed: 21961774].

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chovanova Z, Muchova J, Sivonova M, Dvorakova M, Zitnanova I, Waczulikova I, et al. Effect of polyphenolic extract, Pycnogenol, on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder. Free Radic Res. 2006;40:1003–10. https://doi.org/10.1080/10715760600824902. WM44447X8027783L [pii]. [PubMed: 17015282].

    Article  CAS  PubMed  Google Scholar 

  153. Garcia RJ, Francis L, Dawood M, Lai ZW, Faraone SV, Perl A. Attention deficit and hyperactivity disorder scores are elevated and respond to NAC treatment in patients with SLE. Arthritis Rheum. 2013;65:1313–8. https://doi.org/10.1002/art.37893. [PubMed: 23400548].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative stress and ADHD: a meta-analysis. J Atten Disord. 2015;19(11):915–24. https://doi.org/10.1177/1087054713510354.

    Article  PubMed  Google Scholar 

  155. Ming X, Chen N, Ray C, Brewer G, Kornitzer J, Steer RA. A gut feeling: a hypothesis of the role of the microbiome in attention-deficit/hyperactivity disorders. Child Neurol Open. 2018;5:1–6. https://doi.org/10.1177/2329048X18786799.

    Article  Google Scholar 

  156. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:120. https://doi.org/10.3389/fncel.2017.00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol. 2017;23:5486–98. https://doi.org/10.3748/wjg.v23.i30.5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  159. Ellekilde M, Selfjord E, Larsen CS, Jakesevic M, Rune I, Tranberg B, et al. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep. 2014;4:5922. https://doi.org/10.1038/srep05922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013;9(11):e1003726. https://doi.org/10.1371/journal.ppat.1003726. PMID: 24244158; PubMed Central PMCID: PMC3828163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–74. https://doi.org/10.1016/j.jpsychires.2008.03.009. PMID: 18456279.

    Article  PubMed  Google Scholar 

  162. Clayton TA. Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS Lett. 2012;586(7):956–61. https://doi.org/10.1016/j.febslet.2012.01.049. PMID: 22306194.

    Article  CAS  PubMed  Google Scholar 

  163. Gertsman I, Gangoiti JA, Nyhan WL, Barshop BA. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome. Mol Genet Metab. 2015;114(3):431–7. https://doi.org/10.1016/j.ymgme.2015.01.005. PMID: 25680927.

    Article  CAS  PubMed  Google Scholar 

  164. Aarts E, Ederveen THA, Naaijen J, Zwiers MP, Boekhorst J, Timmerman HM, et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One. 2017;12:1–17. https://doi.org/10.1371/journal.pone.0183509.

    Article  CAS  Google Scholar 

  165. Partty A, Kalliomaki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res. 2015;77(6):823–8. https://doi.org/10.1038/pr.2015.51. PMID: 25760553.

    Article  PubMed  Google Scholar 

  166. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. https://doi.org/10.3389/fcimb.2012.00104. PMID: 22919693; PubMed Central PMCID: PMC3417542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81(5):411–23. https://doi.org/10.1016/j.biopsych.2016.08.024. PMID: 27773355; PubMed Central PMCID: PMC5285286.

    Article  PubMed  Google Scholar 

  168. Aarts E, van Holstein M, Hoogman M, Onnink M, Kan C, Franke B, et al. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: a pilot study on the role of striatal dopamine. Behav Pharmacol. 2015;26(1 and 2):227–40. https://doi.org/10.1097/FBP.0000000000000116. Epub 2014/12/09. PMID: 25485641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Knutson B, Gibbs SE. Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology. 2007;191(3):813–22. https://doi.org/10.1007/s00213-006-0686-7. PMID: 17279377.

    Article  CAS  PubMed  Google Scholar 

  170. Prehn-kristensen A, Zimmermann A, Tittmann L, Lieb W, Schreiber S, Baving L, et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One. 2018;13(7):e0200728. https://doi.org/10.1371/journal.pone.0200728. eCollection 2018. 2018:1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe. 2016;42:197–204. https://doi.org/10.1016/j.anaerobe.2016.10.011. Epub 2016/10/31. PMID: 27794467.

    Article  CAS  PubMed  Google Scholar 

  172. Edden RA, Crocetti D, Zhu H, Gilbert DL, Mostofsky SH. Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2012;69(7):750–3. https://doi.org/10.1001/archgenpsychiatry.2011.2280. Epub 2012/07/04. PMID: 22752239; PubMed Central PMCID: PMCPmc3970207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pallanti, S., Salerno, L. (2020). Adult ADHD: Future Directions for Practice and Research. In: The Burden of Adult ADHD in Comorbid Psychiatric and Neurological Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-39051-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39051-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39050-1

  • Online ISBN: 978-3-030-39051-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics