Skip to main content

Computed Tomography of the Liver

  • Chapter
  • First Online:
Imaging of the Liver and Intra-hepatic Biliary Tract

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 843 Accesses

Abstract

Multidetector Computed Tomography (CT) plays a pivotal role in the evaluation of liver pathologies due to its fast acquisition time, thinner image thickness and narrow collimation, resulting in high temporal and spatial resolution, fundamental to detect subtle liver lesions and to optimize radiation exposure.

State-of-the-art liver imaging requires proper patient preparation, the implementation of optimized contrast dye injection strategies, and a thorough CT scanner configuration.

A multiphasic CT examination is mandatory to maximize diagnostic performances in terms of lesion identification and is the current choice in daily clinical practice. In the other hand, functional imaging, such as CT perfusion, provides quantitative parameters that improve diagnostic capabilities in selected cases. Operators needs to know different imaging reconstruction strategies and master all the available post-processing techniques, in order to select the best option in every clinical scenario. Over the last decades, Dualenergy CT has further expanded the diagnostic possibilities in liver imaging and is currently widely implemented in multiple Institutions worldwide. Eventually, photon-counting CT is the very latest technical advancement in CT imaging and is at the forefront of scientific research, bearing the potential to revolutionize liver imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ad-Hoc Working Group of E, et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 27(12):4263–4272

    Article  Google Scholar 

  • Agrawal MD et al (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34(3):589–612

    Article  PubMed  Google Scholar 

  • Awai K et al (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224(3):757–763

    Article  PubMed  Google Scholar 

  • Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61

    Article  PubMed  Google Scholar 

  • Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24(6):1679–1691

    Article  PubMed  Google Scholar 

  • Boer P (1984) Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Phys 247(4 Pt 2):F632–F636

    CAS  Google Scholar 

  • Bongers MN et al (2016) Frequency selective non-linear blending to improve image quality in liver CT. RöFo 188(12):1163–1168

    CAS  PubMed  Google Scholar 

  • Bruce RJ et al (2009) Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol 192(3):711–718

    Article  PubMed  Google Scholar 

  • Cai W et al (2016) Comparison of liver volumetry on contrast-enhanced CT images: one semiautomatic and two automatic approaches. J Appl Clin Med Phys 17(6):118–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruso D et al (2018) Lean body weight-tailored iodinated contrast injection in obese patient: Boer versus James formula. Biomed Res Int 2018:8521893

    PubMed  PubMed Central  Google Scholar 

  • Casillas VJ et al (2000) Imaging of nontraumatic hemorrhagic hepatic lesions. Radiographics 20(2):367–378

    CAS  PubMed  Google Scholar 

  • Choi SH et al (2010) The role of perfusion CT as a follow-up modality after transcatheter arterial chemoembolization: an experimental study in a rabbit model. Investig Radiol 45(7):427–436

    Google Scholar 

  • Federle MP, Blachar A (2001) CT evaluation of the liver: principles and techniques. Semin Liver Dis 21(2):135–145

    CAS  PubMed  Google Scholar 

  • Fleischmann D, Boas FE (2011) Computed tomography--old ideas and new technology. Eur Radiol 21(3):510–517

    PubMed  Google Scholar 

  • Flemming BP, De Cecco CN, Hardie AD (2016) Limitation of virtual noncontrast images in evaluation of a liver lesion status post-transarterial chemoembolization. J Comput Assist Tomogr 40(4):557–559

    PubMed  Google Scholar 

  • Flohr TG et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    PubMed  Google Scholar 

  • Foley WD (2002) Special focus session: multidetector CT: abdominal visceral imaging. Radiographics 22(3):701–719

    PubMed  Google Scholar 

  • Foley WD et al (2016) White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity. J Comput Assist Tomogr 40(6):846–850

    PubMed  Google Scholar 

  • Forghani R, De Man B, Gupta R (2017a) Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 1. Neuroimaging Clin N Am 27(3):371–384

    PubMed  Google Scholar 

  • Forghani R, De Man B, Gupta R (2017b) Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 2. Neuroimaging Clin N Am 27(3):385–400

    PubMed  Google Scholar 

  • Furlan A et al (2011) Hepatocellular carcinoma in cirrhotic patients at multidetector CT: hepatic venous phase versus delayed phase for the detection of tumour washout. Br J Radiol 84(1001):403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furlow B (2014) CT image visualization: a conceptual introduction. Radiol Technol 86(2):187CT–204CT; quiz 205CT–207CT

    PubMed  Google Scholar 

  • Furlow B (2015) Dual-energy computed tomography. Radiol Technol 86(3):301ct–321ct; quiz322ct–325ct

    PubMed  Google Scholar 

  • Garcia-Figueiras R et al (2013) CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol 200(1):8–19

    PubMed  Google Scholar 

  • Geyer LL et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):339–357

    PubMed  Google Scholar 

  • Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18(4):555–569

    PubMed  PubMed Central  Google Scholar 

  • Guyennon A et al (2010) Perfusion characterization of liver metastases from endocrine tumors: computed tomography perfusion. World J Radiol 2(11):449–454

    PubMed  PubMed Central  Google Scholar 

  • Heiken JP et al (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195(2):353–357

    CAS  PubMed  Google Scholar 

  • Hu H et al (2000) Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215(1):55–62

    CAS  PubMed  Google Scholar 

  • Hyodo T et al (2017) Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation. Radiology 283(1):108–118

    Article  PubMed  Google Scholar 

  • Ippolito D et al (2012) Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: role of dynamic-CT perfusion imaging. Eur Radiol 22(4):803–811

    Article  PubMed  Google Scholar 

  • James WPT, Waterlow JC, DHSS/MRC Group on Obesity Research (1976) Research on obesity: a report of the DHSS/MRC group, vol ix. H.M.S.O., London, p 94

    Google Scholar 

  • Jiang T, Zhu AX, Sahani DV (2013) Established and novel imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. J Hepatol 58(1):169–177

    Article  CAS  PubMed  Google Scholar 

  • Johnson PT, Fishman EK (2013) Routine use of precontrast and delayed acquisitions in abdominal CT: time for change. Abdom Imaging 38(2):215–223

    Article  PubMed  Google Scholar 

  • Johnson PT, Fishman EK (2018) Enhancing Image Quality in the Era of Radiation Dose Reduction: Postprocessing Techniques for Body CT. J Am Coll Radiol 15(3 Pt A):486–488

    Article  PubMed  Google Scholar 

  • Johnson TR et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  • Kambadakone AR, Sahani DV (2009) Body perfusion CT: technique, clinical applications, and advances. Radiol Clin N Am 47(1):161–178

    Article  PubMed  Google Scholar 

  • Kamel IR, Georgiades C, Fishman EK (2003) Incremental value of advanced image processing of multislice computed tomography data in the evaluation of hypervascular liver lesions. J Comput Assist Tomogr 27(4):652–656

    Article  PubMed  Google Scholar 

  • Kanbay M et al (2017) Serum uric acid and risk for acute kidney injury following contrast. Angiology 68(2):132–144

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu M et al (2006) Imaging liver metastases: review and update. Eur J Radiol 58(2):217–228

    PubMed  Google Scholar 

  • Kartalis N, Brehmer K, Loizou L (2017) Multi-detector CT: liver protocol and recent developments. Eur J Radiol 97:101–109

    CAS  PubMed  Google Scholar 

  • Kim T et al (2001) Discrimination of small hepatic hemangiomas from hypervascular malignant tumors smaller than 3 cm with three-phase helical CT. Radiology 219(3):699–706

    CAS  PubMed  Google Scholar 

  • Kim SH, Kamaya A, Willmann JK (2014) CT perfusion of the liver: principles and applications in oncology. Radiology 272(2):322–344

    PubMed  Google Scholar 

  • Kondo H et al (2010) Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: comparison of total body weight, lean body weight, and blood volume. Radiology 254(1):163–169

    PubMed  Google Scholar 

  • Krauss B (2018) Dual-energy computed tomography: technology and challenges. Radiol Clin N Am 56(4):497–506

    PubMed  Google Scholar 

  • Kwasa EA, Vinayak S, Armstrong R (2014) The role of inflammation in contrast-induced nephropathy. Br J Radiol 87(1041):20130738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laghi A (2007) Multidetector CT (64 slices) of the liver: examination techniques. Eur Radiol 17(3):675–683

    PubMed  Google Scholar 

  • Lee CH et al (2013) Use of positive oral contrast agents in abdominopelvic computed tomography for blunt abdominal injury: meta-analysis and systematic review. Eur Radiol 23(9):2513–2521

    Article  PubMed  Google Scholar 

  • Lee CH et al (2016) Water as neutral oral contrast agent in abdominopelvic CT: comparing effectiveness with Gastrografin in the same patient. Med J Malaysia 71(6):322–327

    CAS  PubMed  Google Scholar 

  • Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    PubMed  Google Scholar 

  • Lodewick TM et al (2016) Fast and accurate liver volumetry prior to hepatectomy. HPB (Oxford) 18(9):764–772

    Google Scholar 

  • Lv P et al (2015) Combined use of automatic tube voltage selection and current modulation with iterative reconstruction for CT evaluation of small Hypervascular hepatocellular carcinomas: effect on lesion conspicuity and image quality. Korean J Radiol 16(3):531–540

    PubMed  PubMed Central  Google Scholar 

  • Maher MM et al (2004) Techniques, clinical applications and limitations of 3D reconstruction in CT of the abdomen. Korean J Radiol 5(1):55–67

    PubMed  PubMed Central  Google Scholar 

  • Marin D et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm--initial clinical experience. Radiology 254(1):145–153

    PubMed  Google Scholar 

  • Marin D et al (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342

    PubMed  Google Scholar 

  • McCollough CH et al (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653

    PubMed  Google Scholar 

  • Meijerink MR et al (2008) Total-liver-volume perfusion CT using 3-D image fusion to improve detection and characterization of liver metastases. Eur Radiol 18(10):2345–2354

    PubMed  Google Scholar 

  • Moos SI et al (2013) Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: a meta-analysis. Eur J Radiol 82(9):e387–e399

    PubMed  Google Scholar 

  • Muenzel D et al (2017a) Material density iodine images in dual-energy CT: detection and characterization of hypervascular liver lesions compared to magnetic resonance imaging. Eur J Radiol 95:300–306

    PubMed  Google Scholar 

  • Muenzel D et al (2017b) Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study. Eur Radiol Exp 1(1):25

    PubMed  PubMed Central  Google Scholar 

  • Ng CS et al (2011) Reproducibility of CT perfusion parameters in liver tumors and normal liver. Radiology 260(3):762–770

    PubMed  PubMed Central  Google Scholar 

  • Patino M et al (2015) Iterative reconstruction techniques in abdominopelvic CT: technical concepts and clinical implementation. AJR Am J Roentgenol 205(1):W19–W31

    PubMed  Google Scholar 

  • Patnana M et al (2018) Liver calcifications and calcified liver masses: pattern recognition approach on CT. AJR Am J Roentgenol 211(1):76–86

    PubMed  Google Scholar 

  • Pickhardt PJ et al (2012) Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis. Eur Radiol 22(5):1075–1082

    PubMed  Google Scholar 

  • Sahani D (2012) Perfusion CT: an overview of technique and clinical applications. http://cds.ismrm.org/protected/10MProceedings/files/Tues%20E09_02%Sahani.pdf

  • Sauter AP et al (2018) Dual-layer spectral computed tomography: virtual non-contrast in comparison to true non-contrast images. Eur J Radiol 104:108–114

    PubMed  Google Scholar 

  • Scholtz JE et al (2015) Non-linear image blending improves visualization of head and neck primary squamous cell carcinoma compared to linear blending in dual-energy CT. Clin Radiol 70(2):168–175

    PubMed  Google Scholar 

  • Siegel MJ et al (2016) White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology. J Comput Assist Tomogr 40(6):841–845

    PubMed  Google Scholar 

  • Silva AC et al (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1046. discussion 1047-50

    PubMed  Google Scholar 

  • Soyer P et al (2004) Detection of hypovascular hepatic metastases at triple-phase helical CT: sensitivity of phases and comparison with surgical and histopathologic findings. Radiology 231(2):413–420

    Article  PubMed  Google Scholar 

  • Spearman JV et al (2016) Effect of automated attenuation-based tube voltage selection on radiation dose at CT: an observational study on a global scale. Radiology 279(1):167–174

    Article  PubMed  Google Scholar 

  • Stacul F et al (2011) Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol 21(12):2527–2541

    Article  PubMed  Google Scholar 

  • Tawfik AM et al (2012) Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience. Investig Radiol 47(5):306–311

    Article  Google Scholar 

  • Thomas ME et al (2015) The definition of acute kidney injury and its use in practice. Kidney Int 87(1):62–73

    Article  PubMed  Google Scholar 

  • van der Molen AJ et al (2018a) Post-contrast acute kidney injury—part 1: definition, clinical features, incidence, role of contrast medium and risk factors: recommendations for updated ESUR contrast medium safety committee guidelines. Eur Radiol 28(7):2845–2855

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Molen AJ et al (2018b) Post-contrast acute kidney injury. Part 2: risk stratification, role of hydration and other prophylactic measures, patients taking metformin and chronic dialysis patients: recommendations for updated ESUR contrast medium safety committee guidelines. Eur Radiol 28(7):2856–2869

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Summers RM (2012) Machine learning and radiology. Med Image Anal 16(5):933–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidekamm C et al (2005) Effects of TIPS on liver perfusion measured by dynamic CT. AJR Am J Roentgenol 184(2):505–510

    Article  PubMed  Google Scholar 

  • Willemink MJ, Noel PB (2018) The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol

    Google Scholar 

  • Willemink MJ et al (2013) Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 23(6):1632–1642

    PubMed  Google Scholar 

  • Willemink MJ et al (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289(2):293–312

    PubMed  Google Scholar 

  • Williamson EE, McKinney JM (2001) Assessing the adequacy of peripherally inserted central catheters for power injection of intravenous contrast agents for CT. J Comput Assist Tomogr 25(6):932–937

    CAS  PubMed  Google Scholar 

  • Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199(5 Suppl):S9–S15

    PubMed  Google Scholar 

  • Yu MH et al (2013) Low tube voltage intermediate tube current liver MDCT: sinogram-affirmed iterative reconstruction algorithm for detection of hypervascular hepatocellular carcinoma. AJR Am J Roentgenol 201(1):23–32

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Laghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Santis, D., Landolfi, F., Zerunian, M., Caruso, D., Laghi, A. (2021). Computed Tomography of the Liver. In: Quaia, E. (eds) Imaging of the Liver and Intra-hepatic Biliary Tract. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-38983-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38983-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38982-6

  • Online ISBN: 978-3-030-38983-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics