Skip to main content

Connected Graphs with a Given Degree Sequence: Efficient Sampling, Correlations, Community Detection and Robustness

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Random graph models can help us assess the significance of the structural properties of real complex systems. Given the value of a graph property and its value in a randomized ensemble, we can determine whether the property is explained by chance by comparing its real value to its value in the ensemble. The conclusions drawn with this approach obviously depend on the choice of randomization. We argue that keeping graphs in one connected piece, or component, is key for many applications where complex graphs are assumed to be connected either by definition (e.g. the Internet) or by construction (e.g. a crawled subset of the World-Wide Web obtained only by following hyperlinks). Using an heuristic to quickly sample the ensemble of small connected simple graphs with a fixed degree sequence, we investigate the significance of the structural patterns found in real connected graphs. We find that, in sparse networks, the connectedness constraint changes degree correlations, the outcome of community detection with modularity, and the predictions of percolation on the ensemble.

Keywords

  • Random graphs
  • Sampling
  • Network analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-38965-9_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-38965-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Available at https://gitlab.com/jhring/connected_cm.

  2. 2.

    Many standard optimization methods are capable of fulfilling the role of optimizer: Spectral embedding [37, 39] and greedy maximization [40] are well-known examples.

  3. 3.

    This strategy works thanks to the regularization properties of the modularity: The partition in a single community (K = 1) has zero modularity due to the negative contributions of the null model, and so does the partition in K = n communities of 1 node since no two nodes share a community. It follows that there is an optimum K somewhere in between these two extremes.

References

  1. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    CrossRef  Google Scholar 

  2. Erdős, P., Rényi, A.: Publ. Math. 6, 290 (1959)

    Google Scholar 

  3. Gilbert, E.N.: Ann. Math. Stat. 30(4), 1141 (1959)

    CrossRef  Google Scholar 

  4. Connor, E.F., Simberloff, D.: Ecology 60(6), 1132 (1979)

    CrossRef  Google Scholar 

  5. Molloy, M., Reed, B.A., Random Struct. Algoritm. 6(2/3), 161 (1995). https://doi.org/10.1002/rsa.3240060204

    CrossRef  Google Scholar 

  6. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001). https://doi.org/10.1103/PhysRevE.64.026118

    CrossRef  ADS  Google Scholar 

  7. Coolen, T., Annibale, A., Roberts, E.: Generating Random Networks and Graphs. Oxford University Press, Oxford (2017)

    CrossRef  Google Scholar 

  8. Frank, O., Strauss, D.: J. Am. Stat. Assoc. 81(395), 832 (1986)

    CrossRef  Google Scholar 

  9. Olhede, S.C., Wolfe, P.J.: Proc. Natl. Acad. Sci. U. S. A. 111(41), 14722 (2014)

    Google Scholar 

  10. Vázquez, A., Moreno, Y.: Phys. Rev. E 67(1), 015101 (2003)

    CrossRef  ADS  Google Scholar 

  11. Hébert-Dufresne, L., Allard, A., Young, J.G., Dubé, L.J.: Phys. Rev. E 88(6), 062820 (2013)

    CrossRef  ADS  Google Scholar 

  12. Allard, A., Hébert-Dufresne, L.: Phys. Rev. X 9(1), 011023 (2019)

    Google Scholar 

  13. Orsini, C., Dankulov, M.M., Colomer-de Simón, P., Jamakovic, A., Mahadevan, P., Vahdat, A., Bassler, K.E., Toroczkai, Z., Boguná, M., Caldarelli, G., et al.: Nat. Commun. 6, 8627 (2015)

    CrossRef  ADS  Google Scholar 

  14. Tishby, I., Biham, O., Katzav, E., Kühn, R.: Phys. Rev. E 97(4), 042318 (2018)

    CrossRef  ADS  Google Scholar 

  15. Tishby, I., Biham, O., Katzav, E., Kühn, R.: (2018). arXiv:1810.02198

    Google Scholar 

  16. Gray, C., Mitchell, L., Roughan, M.: J. Complex Netw. 7(6), 896–912 (2019). https://doi.org/10.1093/comnet/cnz011

    CrossRef  MathSciNet  Google Scholar 

  17. Crane, H.: Probabilistic Foundations of Statistical Network Analysis. Chapman and Hall/CRC, Boca Raton (2018)

    CrossRef  Google Scholar 

  18. Barabási, A.L., Albert, R.: Science 286(5439), 509 (1999)

    CrossRef  ADS  MathSciNet  Google Scholar 

  19. Erickson, B.H.: Sociol. Methodol. 10, 276 (1979)

    CrossRef  Google Scholar 

  20. Lee, S.H., Kim, P.J., Jeong, H.: Phys. Rev. E 73(1), 016102 (2006)

    CrossRef  ADS  Google Scholar 

  21. Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: SIAM Rev. 60(2), 315 (2018)

    CrossRef  MathSciNet  Google Scholar 

  22. Viger, F., Latapy, M.: (2005). arXiv:cs/0502085

    Google Scholar 

  23. Viger, F., Latapy, M.: J. Complex Netw. 4(1), 15 (2015)

    CrossRef  Google Scholar 

  24. Gkantsidist, C., Mihail, M., Zegura, E.: In: Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments, vol. 111, p. 16. SIAM, Philadelphia (2003)

    Google Scholar 

  25. Havel, V.: Casopis Pest. Mat. 80, 477 (1955)

    Google Scholar 

  26. Hakimi, S.L.: J. Soc. Ind. Appl. Math. 10(3), 496 (1962). https://doi.org/10.1137/0110037

    CrossRef  Google Scholar 

  27. Seierstad, C., Opsahl, T.: Scand. J. Manag. 27(1), 44 (2011)

    CrossRef  Google Scholar 

  28. Newman, M.E.J.: Phys. Rev. Lett. 89(20), 208701 (2002)

    CrossRef  ADS  Google Scholar 

  29. Newman, M.E., Park, J.: Phys. Rev. E 68(3), 036122 (2003)

    CrossRef  ADS  Google Scholar 

  30. Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., Neher, R.A.: Bioinformatics 34(23), 4121 (2018)

    CrossRef  Google Scholar 

  31. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: IEEE Trans. Power Syst. 26(1), 12 (2010)

    CrossRef  ADS  Google Scholar 

  32. Fortunato, S., Hric, D., Phys. Rep. 659, 1 (2016)

    CrossRef  ADS  MathSciNet  Google Scholar 

  33. Young, J.G., St-Onge, G., Desrosiers, P., Dubé, L.J.: Phys. Rev. E 98(3), 032309 (2018)

    CrossRef  ADS  Google Scholar 

  34. Hébert-Dufresne, L., Allard, A., Young, J.G., Dubé, L.J.: Sci. Rep. 3, 2171 (2013)

    CrossRef  Google Scholar 

  35. Riolo, M.A., Newman, M.: (2019). arXiv:1908.09867

    Google Scholar 

  36. Newman, M.E.J., Girvan, M.: Phys. Rev. E 69(2), 026113 (2004)

    CrossRef  ADS  Google Scholar 

  37. Newman, M.E.: Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577 (2006)

    Google Scholar 

  38. Reichardt, J., Bornholdt, S.: Phys. Rev. E 74(1), 016110 (2006)

    CrossRef  ADS  MathSciNet  Google Scholar 

  39. White, S., Smyth, P.: In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 274–285. SIAM, Philadelphia (2005)

    Google Scholar 

  40. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    CrossRef  Google Scholar 

  41. Traag, V.A., Van Dooren, P., Nesterov, Y.: Phys. Rev. E 84(1), 016114 (2011)

    CrossRef  ADS  Google Scholar 

  42. Peel, L., Larremore, D.B., Clauset, A.: Sci. Adv. 3(5), e1602548 (2017)

    CrossRef  ADS  Google Scholar 

  43. Expert, P., Evans, T.S., Blondel, V.D., Lambiotte, R.: Proc. Natl. Acad. Sci. U. S. A. 108(19), 7663 (2011)

    Google Scholar 

  44. Peixoto, T.P.: Figshare (2014)

    Google Scholar 

  45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: J. Mach. Learn. Res. 12, 2825 (2011)

    MathSciNet  Google Scholar 

  46. Newman, M., Cantwell, G.T., Young, J.G.: (2019). arXiv:1907.12581

    Google Scholar 

  47. Newman, M.E.J.: Phys. Rev. E 66(1), 016128 (2002)

    CrossRef  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the James S. McDonnell Foundation (JGY) and Grant No. DMS-1622390 from the National Science Foundation (LHD). The authors contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Hébert-Dufresne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ring, J.H., Young, JG., Hébert-Dufresne, L. (2020). Connected Graphs with a Given Degree Sequence: Efficient Sampling, Correlations, Community Detection and Robustness. In: Masuda, N., Goh, KI., Jia, T., Yamanoi, J., Sayama, H. (eds) Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on Network Science. NetSci-X 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-38965-9_3

Download citation