Abstract
Random graph models can help us assess the significance of the structural properties of real complex systems. Given the value of a graph property and its value in a randomized ensemble, we can determine whether the property is explained by chance by comparing its real value to its value in the ensemble. The conclusions drawn with this approach obviously depend on the choice of randomization. We argue that keeping graphs in one connected piece, or component, is key for many applications where complex graphs are assumed to be connected either by definition (e.g. the Internet) or by construction (e.g. a crawled subset of the World-Wide Web obtained only by following hyperlinks). Using an heuristic to quickly sample the ensemble of small connected simple graphs with a fixed degree sequence, we investigate the significance of the structural patterns found in real connected graphs. We find that, in sparse networks, the connectedness constraint changes degree correlations, the outcome of community detection with modularity, and the predictions of percolation on the ensemble.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at https://gitlab.com/jhring/connected_cm.
- 2.
- 3.
This strategy works thanks to the regularization properties of the modularity: The partition in a single community (K = 1) has zero modularity due to the negative contributions of the null model, and so does the partition in K = n communities of 1 node since no two nodes share a community. It follows that there is an optimum K ∗ somewhere in between these two extremes.
References
Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
Erdős, P., Rényi, A.: Publ. Math. 6, 290 (1959)
Gilbert, E.N.: Ann. Math. Stat. 30(4), 1141 (1959)
Connor, E.F., Simberloff, D.: Ecology 60(6), 1132 (1979)
Molloy, M., Reed, B.A., Random Struct. Algoritm. 6(2/3), 161 (1995). https://doi.org/10.1002/rsa.3240060204
Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001). https://doi.org/10.1103/PhysRevE.64.026118
Coolen, T., Annibale, A., Roberts, E.: Generating Random Networks and Graphs. Oxford University Press, Oxford (2017)
Frank, O., Strauss, D.: J. Am. Stat. Assoc. 81(395), 832 (1986)
Olhede, S.C., Wolfe, P.J.: Proc. Natl. Acad. Sci. U. S. A. 111(41), 14722 (2014)
Vázquez, A., Moreno, Y.: Phys. Rev. E 67(1), 015101 (2003)
Hébert-Dufresne, L., Allard, A., Young, J.G., Dubé, L.J.: Phys. Rev. E 88(6), 062820 (2013)
Allard, A., Hébert-Dufresne, L.: Phys. Rev. X 9(1), 011023 (2019)
Orsini, C., Dankulov, M.M., Colomer-de Simón, P., Jamakovic, A., Mahadevan, P., Vahdat, A., Bassler, K.E., Toroczkai, Z., Boguná, M., Caldarelli, G., et al.: Nat. Commun. 6, 8627 (2015)
Tishby, I., Biham, O., Katzav, E., Kühn, R.: Phys. Rev. E 97(4), 042318 (2018)
Tishby, I., Biham, O., Katzav, E., Kühn, R.: (2018). arXiv:1810.02198
Gray, C., Mitchell, L., Roughan, M.: J. Complex Netw. 7(6), 896–912 (2019). https://doi.org/10.1093/comnet/cnz011
Crane, H.: Probabilistic Foundations of Statistical Network Analysis. Chapman and Hall/CRC, Boca Raton (2018)
Barabási, A.L., Albert, R.: Science 286(5439), 509 (1999)
Erickson, B.H.: Sociol. Methodol. 10, 276 (1979)
Lee, S.H., Kim, P.J., Jeong, H.: Phys. Rev. E 73(1), 016102 (2006)
Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: SIAM Rev. 60(2), 315 (2018)
Viger, F., Latapy, M.: (2005). arXiv:cs/0502085
Viger, F., Latapy, M.: J. Complex Netw. 4(1), 15 (2015)
Gkantsidist, C., Mihail, M., Zegura, E.: In: Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments, vol. 111, p. 16. SIAM, Philadelphia (2003)
Havel, V.: Casopis Pest. Mat. 80, 477 (1955)
Hakimi, S.L.: J. Soc. Ind. Appl. Math. 10(3), 496 (1962). https://doi.org/10.1137/0110037
Seierstad, C., Opsahl, T.: Scand. J. Manag. 27(1), 44 (2011)
Newman, M.E.J.: Phys. Rev. Lett. 89(20), 208701 (2002)
Newman, M.E., Park, J.: Phys. Rev. E 68(3), 036122 (2003)
Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., Neher, R.A.: Bioinformatics 34(23), 4121 (2018)
Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: IEEE Trans. Power Syst. 26(1), 12 (2010)
Fortunato, S., Hric, D., Phys. Rep. 659, 1 (2016)
Young, J.G., St-Onge, G., Desrosiers, P., Dubé, L.J.: Phys. Rev. E 98(3), 032309 (2018)
Hébert-Dufresne, L., Allard, A., Young, J.G., Dubé, L.J.: Sci. Rep. 3, 2171 (2013)
Riolo, M.A., Newman, M.: (2019). arXiv:1908.09867
Newman, M.E.J., Girvan, M.: Phys. Rev. E 69(2), 026113 (2004)
Newman, M.E.: Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577 (2006)
Reichardt, J., Bornholdt, S.: Phys. Rev. E 74(1), 016110 (2006)
White, S., Smyth, P.: In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 274–285. SIAM, Philadelphia (2005)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)
Traag, V.A., Van Dooren, P., Nesterov, Y.: Phys. Rev. E 84(1), 016114 (2011)
Peel, L., Larremore, D.B., Clauset, A.: Sci. Adv. 3(5), e1602548 (2017)
Expert, P., Evans, T.S., Blondel, V.D., Lambiotte, R.: Proc. Natl. Acad. Sci. U. S. A. 108(19), 7663 (2011)
Peixoto, T.P.: Figshare (2014)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: J. Mach. Learn. Res. 12, 2825 (2011)
Newman, M., Cantwell, G.T., Young, J.G.: (2019). arXiv:1907.12581
Newman, M.E.J.: Phys. Rev. E 66(1), 016128 (2002)
Acknowledgements
This work is supported by the James S. McDonnell Foundation (JGY) and Grant No. DMS-1622390 from the National Science Foundation (LHD). The authors contributed equally.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ring, J.H., Young, JG., Hébert-Dufresne, L. (2020). Connected Graphs with a Given Degree Sequence: Efficient Sampling, Correlations, Community Detection and Robustness. In: Masuda, N., Goh, KI., Jia, T., Yamanoi, J., Sayama, H. (eds) Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on Network Science. NetSci-X 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-38965-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-38965-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38964-2
Online ISBN: 978-3-030-38965-9
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)