Skip to main content

Fog Computing Based Traffic and Car Parking Intelligent System

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2019)

Abstract

Internet of Things (IoT) has attracted the attention of researchers from both industry and academia. Smart city, as one of the IoT applications, includes several sub-applications, such as intelligent transportation system (ITS), smart car parking and smart grid. Focusing on traffic flow management and car parking systems because of their correlation, this paper aims to provide a framework solution to both systems using online detection and prediction based on fog computing. Online event detection plays a vital role in traffic flow management, as circumstances, such as social events and congestion resulting from accidents and roadworks, affect traffic flow and parking availability. We developed an online prediction model using an incremental decision tree and distributed the prediction process on fog nodes at each intersection traffic light responsible for a connecting road. It effectively reduces the load on the communication network, as the data is processed, and the decision is made locally, with low storage requirements. The spatially correlated fog nodes can communicate if necessary to take action for an emergency. The experiments were conducted using the Melbourne city open data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahangari, S., Chavis, C., Jeihani, M., Moghaddam, Z.R.: Quantifying the impact of on-street parking information on congestion mitigation using a driving simulator. Technical report (2018)

    Google Scholar 

  2. Alajali, W., Wen, S., Zhou, W.: On-street car parking prediction in smart city: a multi-source data analysis in sensor-cloud environment. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10658, pp. 641–652. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72395-2_58

    Chapter  Google Scholar 

  3. Alajali, W., Zhou, W., Wen, S.: Traffic flow prediction for road intersection safety. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 812–820. IEEE (2018)

    Google Scholar 

  4. Alajali, W., Zhou, W., Wen, S., Wang, Y.: Intersection traffic prediction using decision tree models. Symmetry 10(9), 386 (2018)

    Article  Google Scholar 

  5. Anantharam, P., Thirunarayan, K., Marupudi, S., Sheth, A.P., Banerjee, T.: Understanding city traffic dynamics utilizing sensor and textual observations. In: AAAI, pp. 3793–3799 (2016)

    Google Scholar 

  6. Ángel, A.M., Bartolo, G.J., Ernestina, M.: Predicting recurring concepts on data-streams by means of a meta-model and a fuzzy similarity function. Expert Syst. Appl. 46, 87–105 (2016)

    Article  Google Scholar 

  7. Anwar, T.: Spatial partitioning of road traffic networks and their temporal evolution. Ph.D. thesis, Swinburne University of Technology (2017)

    Google Scholar 

  8. Arnott, R., Inci, E.: An integrated model of downtown parking and traffic congestion. J. Urban Econ. 60(3), 418–442 (2006)

    Article  Google Scholar 

  9. Asif, M.T., et al.: Spatiotemporal patterns in large-scale traffic speed prediction. IEEE Trans. Intell. Transp. Syst. 15(2), 794–804 (2014)

    Article  Google Scholar 

  10. Backfrieder, C., Ostermayer, G., Mecklenbräuker, C.F.: Increased traffic flow through node-based bottleneck prediction and V2X communication. IEEE Trans. Intell. Transp. Syst. 18(2), 349–363 (2017)

    Article  Google Scholar 

  11. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11(May), 1601–1604 (2010)

    Google Scholar 

  12. Buyya, R., Dastjerdi, A.V.: Internet of Things: Principles and paradigms. Elsevier, Amsterdam (2016)

    Google Scholar 

  13. Castro-Neto, M., Jeong, Y.S., Jeong, M.K., Han, L.D.: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36(3), 6164–6173 (2009)

    Article  Google Scholar 

  14. Chen, D.: Research on traffic flow prediction in the big data environment based on the improved RBF neural network. IEEE Trans. Ind. Inform. 13, 2000–2008 (2017)

    Article  Google Scholar 

  15. Clark, S.: Traffic prediction using multivariate nonparametric regression. J. Transp. Eng. 129(2), 161–168 (2003)

    Article  Google Scholar 

  16. City of Melbourne Data (2017). https://data.melbourne.vic.gov.au/. Accessed March 2017

  17. De Francisci Morales, G., Bifet, A., Khan, L., Gama, J., Fan, W.: IoT big data stream mining. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2119–2120. ACM (2016)

    Google Scholar 

  18. Dell’Acqua, P., Bellotti, F., Berta, R., De Gloria, A.: Time-aware multivariate nearest neighbor regression methods for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 16(6), 3393–3402 (2015)

    Article  Google Scholar 

  19. Faria, E.R., Gonçalves, I.J., de Carvalho, A.C., Gama, J.: Novelty detection in data streams. Artif. Intell. Rev. 45(2), 235–269 (2016)

    Article  Google Scholar 

  20. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  Google Scholar 

  21. Hajibaba, M., Gorgin, S.: A review on modern distributed computing paradigms: cloud computing, jungle computing and fog computing. J. Comput. Inform. Technol. 22(2), 69–84 (2014)

    Article  Google Scholar 

  22. Hamed, M.M., Al-Masaeid, H.R., Said, Z.M.B.: Short-term prediction of traffic volume in urban arterials. J. Transp. Eng. 121(3), 249–254 (1995)

    Article  Google Scholar 

  23. Henry, K.: To build or not to build: infrastructure challenges in the years ahead and the role of the government: address to the conference on the economics of infrastructure in a globalised world: issues, lessons and future challenges (2010)

    Google Scholar 

  24. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

    Article  Google Scholar 

  25. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Disc. 23(1), 128–168 (2011)

    Article  MathSciNet  Google Scholar 

  26. Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., Easa, S.M.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 14(4), 1700–1707 (2013)

    Article  Google Scholar 

  27. Jia, R., Jiang, P., Liu, L., Cui, L., Shi, Y.: Data driven congestion trends prediction of urban transportation. IEEE Internet Things J. 5, 581–591 (2017)

    Article  Google Scholar 

  28. Kim, Y.J., Hong, J.S., et al.: Urban traffic flow prediction system using a multifactor pattern recognition model. IEEE Trans. Intell. Transp. Syst. 16(5), 2744–2755 (2015)

    Article  Google Scholar 

  29. Lana, I., Del Ser, J., Velez, M., Vlahogianni, E.I.: Road traffic forecasting: recent advances and new challenges. IEEE Intell. Transp. Syst. Mag. 10(2), 93–109 (2018)

    Article  Google Scholar 

  30. Lee, S., Fambro, D.: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transp. Res. Rec.: J. Transp. Res. Board 1678, 179–188 (1999)

    Article  Google Scholar 

  31. Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ. Health 9(1), 65 (2010)

    Article  Google Scholar 

  32. Lindley, J.A.: Urban freeway congestion: quantification of the problem and effectiveness of potential solutions. ITE J. 57(1), 27–32 (1987)

    Google Scholar 

  33. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 17(2), 557–569 (2016)

    Article  Google Scholar 

  34. Min, X., Hu, J., Zhang, Z.: Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1535–1540. IEEE (2010)

    Google Scholar 

  35. Mitrovic, N., Asif, M.T., Dauwels, J., Jaillet, P.: Low-dimensional models for compressed sensing and prediction of large-scale traffic data. IEEE Trans. Intell. Transp. Syst. 16(5), 2949–2954 (2015)

    Article  Google Scholar 

  36. Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of page-hinckley, an approach for fault detection in an agro-alimentary production system. In: 2004 5th Asian Control Conference (IEEE Cat. No. 04EX904), vol. 2, pp. 815–818. IEEE (2004)

    Google Scholar 

  37. Networking, T.D.: Connected vehicular transportation. IEEE Veh. Technol. Mag. 12, 42–54 (2017)

    Article  Google Scholar 

  38. Schrank, D., Eisele, B., Lomax, T., Bak, J.: Urban mobility scorecard. Texas A&M Transportation Institute and the Texas A&M University System (2015)

    Google Scholar 

  39. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1–8. IEEE (2014)

    Google Scholar 

  40. Bureau of Transport and Regional Economics: Estimating urban traffic and congestion cost trends for Australian cities (2007)

    Google Scholar 

  41. Wibisono, A., Jatmiko, W., Wisesa, H.A., Hardjono, B., Mursanto, P.: Traffic big data prediction and visualization using fast incremental model trees-drift detection (FIMT-DD). Knowl.-Based Syst. 93, 33–46 (2016)

    Article  Google Scholar 

  42. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  43. Wongcharoen, S., Senivongse, T.: Twitter analysis of road traffic congestion severity estimation. In: 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 1–6. IEEE (2016)

    Google Scholar 

  44. Xiao, J., Xiao, Z., Wang, D., Bai, J., Havyarimana, V., Zeng, F.: Short-term traffic volume prediction by ensemble learning in concept drifting environments. Knowl.-Based Syst. 164, 213–225 (2019)

    Article  Google Scholar 

  45. Yang, Z., Al-Dahidi, S., Baraldi, P., Zio, E., Montelatici, L.: A novel concept drift detection method for incremental learning in nonstationary environments. IEEE Trans. Neural Netw. Learn. Syst. (2019)

    Google Scholar 

  46. Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., Nemirovsky, M.: Key ingredients in an IoT recipe: fog computing, cloud computing, and more fog computing. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 325–329. IEEE (2014)

    Google Scholar 

  47. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78. IEEE (2015)

    Google Scholar 

  48. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42. ACM (2015)

    Google Scholar 

  49. Zhan, H., Gomes, G., Li, X.S., Madduri, K., Sim, A., Wu, K.: Consensus ensemble system for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 19, 3903–3914 (2018)

    Article  Google Scholar 

  50. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)

    Article  Google Scholar 

  51. Zhang, W., Qi, G., Pan, G., Lu, H., Li, S., Wu, Z.: City-scale social event detection and evaluation with taxi traces. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 40 (2015)

    Google Scholar 

  52. Zhang, Y., Niyato, D., Wang, P., Kim, D.I.: Optimal energy management policy of mobile energy gateway. IEEE Trans. Veh. Technol. 65(5), 3685–3699 (2016)

    Article  Google Scholar 

  53. Zhao, J., Sun, S.: High-order gaussian process dynamical models for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 17(7), 2014–2019 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walaa Alajali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alajali, W., Gao, S., Alhusaynat, A.D. (2020). Fog Computing Based Traffic and Car Parking Intelligent System. In: Wen, S., Zomaya, A., Yang, L.T. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2019. Lecture Notes in Computer Science(), vol 11945. Springer, Cham. https://doi.org/10.1007/978-3-030-38961-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38961-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38960-4

  • Online ISBN: 978-3-030-38961-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics