Skip to main content

Abstract

This chapter provides a general overview of surrogate modeling of high-frequency structures, including the associated challenges and the popular ways of their mitigation. Widely used modeling techniques are briefly mentioned, both data-driven (approximation) and physics-based ones. The overall outline of the book topics and scope is discussed along with the book structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ADS (Advanced Design System). (2019). Keysight Technologies, Fountaingrove Parkway 1400, Santa Rosa, CA 95403–1799.

    Google Scholar 

  • Akkaram, S., Beeson, D., Agarwal, H., & Wiggs, G. (2007). Inverse modeling technology for parameter estimation. Structural and Multidisciplinary Optimization, 34(2), 151–164.

    Article  Google Scholar 

  • Alexandrov, N. M., & Lewis, R. M. (2001). An overview of first-order model management for engineering optimization. Optical Engineering, 2(4), 413–430.

    Article  MATH  Google Scholar 

  • Allaire, G. (2015). A review of adjoint methods for sensitivity analysis, uncertainty quantification, and optimization in numerical codes. Ingenieurs de l’Automobile, SIA, 836, 33–36.

    Google Scholar 

  • Allaire, D., & Willcox, K. (2014). A mathematical and computational framework for multifidelity design and analysis with computer models. International Journal for Uncertainty Quantification, 4, 1–20.

    Article  MathSciNet  Google Scholar 

  • Altair FEKO. (2018). Altair HyperWorks, 1820 E Big Beaver Rd, Troy, MI 48083, USA.

    Google Scholar 

  • Angiulli, G., Cacciola, M., & Versaci, M. (2007). Microwave devices and antennas modelling by support vector regression machines. IEEE Transactions on Magnetics, 43(4), 1589–1592.

    Article  Google Scholar 

  • Antenna Magus. (2019). Magus (Pty) Ltd, Magus (Pty) Ltd, Unit 9B Octo Place, Electron Street, Technopark Stellenbosch 7600 South Africa.

    Google Scholar 

  • Aubry, A., De Maio, A., Huang, Y., & Piezzo, M. (2016). Robust design of radar doppler filters. IEEE Transactions on Signal Processing, 64(22), 5848–5860.

    Article  MathSciNet  MATH  Google Scholar 

  • Ayed, R. B., Gong, J., Brisset, S., Gillon, F., & Brochet, P. (2012). Three-level output space mapping strategy for electromagnetic design optimization. IEEE Transactions on Magnetics, 48(2), 671–674.

    Article  Google Scholar 

  • Bandler, J. W., Biernacki, R. M., Chen, S. H., Hemmers, R. H., & Madsen, K. (1995). Electromagnetic optimization exploiting aggressive space mapping. IEEE Transactions on Microwave Theory and Techniques, 41(12), 2874–2882.

    Article  Google Scholar 

  • Bandler, J. W., Rayas-Sánchez, J. E., & Zhang, Q. J. (2002). Yield-driven electromagnetic optimization via space mapping-based neuromodels. International Journal of RF and Microwave Computer-Aided Engineering, 12, 79–89.

    Article  Google Scholar 

  • Bandler, J. W., Cheng, Q. S., Dakroury, S. A., Mohamed, A. S., Bakr, M. H., Madsen, K., & Søndergaard, J. (2004). Space mapping: The state of the art. IEEE Transactions on Microwave Theory and Techniques, 52(1), 337–361.

    Article  Google Scholar 

  • Bandler, J. W., Koziel, S., & Madsen, K. (2008). Editorial—Surrogate modeling and space mapping for engineering optimization. Optimization and Engineering, 9(4), 307–310.

    Article  MATH  Google Scholar 

  • Baratta, I. A., de Andrade, C. B., de Assis, R. R., & Silva, E. J. (2018). Infinitesimal dipole model using space mapping optimization for antenna placement. IEEE Antennas and Wireless Propagation Letters, 17(1), 17–20.

    Article  Google Scholar 

  • Baur, U., Benner, P., & Feng, L. (2014). Model order reduction for linear and nonlinear systems: A system-theoretic perspective. Archives of Computational Methods in Engineering, 21(4), 331–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic algorithm. International Journal of Advances in Soft Computing and its Applications, 5(1), 1–35.

    Google Scholar 

  • Bekasiewicz, A., & Koziel, S. (2015). Structure and computationally efficient simulation-driven design of compact UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 14, 1282–1285.

    Article  Google Scholar 

  • Biernacki, R., Chen, S., Estep, G., Rousset, J., & Sifri, J. (2012). Statistical analysis and yield optimization in practical RF and microwave systems. IEEE MTT-S International Microwave Symposium Digest. Montreal. pp. 1–3.

    Google Scholar 

  • Bilicz, S. (2016). Sparse grid surrogate models for electromagnetic problems with many parameters. IEEE Transactions on Magnetics, 52(3), 1–4.

    Google Scholar 

  • Bischof, C., Bücker, H. M., Hovland, P. D., Naumann, U., & Utke, J. (Eds.). (2008). Advances in automatic differentiation (Lecture Notes in Computational Science and Engineering). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Bishop, C. (2006). Pattern recognition and machine learning. New York: Springer.

    MATH  Google Scholar 

  • Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., & Trosset, M. W. (1999). A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization, 17, 1–13.

    Article  Google Scholar 

  • Bramerdorfer, G., & Zăvoianu, A. (2017). Surrogate-based multi-objective optimization of electrical machine designs facilitating tolerance analysis. IEEE Transactions on Magnetics, 53(8), 1–11.

    Article  Google Scholar 

  • Brigham, J. C., & Aquino, W. (2007). Surrogate-model accelerated random search algorithm for global optimization with applications to inverse material identification. Computer Methods in Applied Mechanics and Engineering, 196(45–48), 4561–4576.

    Article  MATH  Google Scholar 

  • Bubnicki, Z. (2005). Parametric optimization. In Modern control theory. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Burgard, S., Farle, O., & Edlinger, R. D. (2013). A novel parametric model order reduction approach with applications to geometrically parameterized microwave devices. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 32(5), 1525–1538.

    Article  MathSciNet  MATH  Google Scholar 

  • Byun, G., Choo, H., & Ling, H. (2013). Optimum placement of DF antenna elements for accurate DOA estimation in a harsh platform environment. IEEE Transactions on Antennas and Propagation, 61(9), 4783–4791.

    Article  Google Scholar 

  • Cadence Allegro. (2019). Cadence design systems, 2655 Seely Ave, San Jose, CA 95134, USA.

    Google Scholar 

  • Cai, X., Qiu, H., Gao, L., & Shao, X. (2017). Metamodeling for high dimensional design problems by multi-fidelity simulations. Structural and Multidisciplinary Optimization, 56(1), 151–166.

    Article  MathSciNet  Google Scholar 

  • Cao, Y., Reitzinger, S., & Zhang, Q. (2011). Simple and efficient high-dimensional parametric modeling for microwave cavity filters using modular neural network. IEEE Microwave and Wireless Components Letters, 21(5), 258–260.

    Article  Google Scholar 

  • Cervantes-González, J. C., Rayas-Sánchez, J. E., López, C. A., Camacho-Pérez, J. R., Brito-Brito, Z., & Chávez-Hurtado, J. L. (2016). Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body. International Journal of RF and Microwave Computer-Aided Engineering, 26(2), 121–128.

    Article  Google Scholar 

  • Chakravorty, P., & Mandal, D. (2016). Radiation pattern correction in mutually coupled antenna arrays using parametric assimilation technique. IEEE Transactions on Antennas and Propagation, 64(9), 4092–4095.

    Article  MathSciNet  MATH  Google Scholar 

  • Chávez-Hurtado, J. L., & Rayas-Sánchez, J. E. (2016). Polynomial-based surrogate modeling of RF and microwave circuits in frequency domain exploiting the multinomial theorem. IEEE Transactions on Microwave Theory and Techniques, 64(12), 4371–4438.

    Article  Google Scholar 

  • Cho, C., Yi, X., Li, D., Wang, Y., & Tentzeris, M. M. (2017). An eigenvalue perturbation solution for the multiphysics simulation of antenna strain sensors. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 49–57.

    Google Scholar 

  • COMSOL Multiphysics. (2018). COMSOL Inc, 1 New England Executive Park, Burlington, MA 01803, USA.

    Google Scholar 

  • Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free optimization, MPS-SIAM Series on Optimization.

    Google Scholar 

  • Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., & Knockaert, L. (2010). Surrogate-based infill optimization applied to electromagnetic problems. International Journal of RF and Microwave Computer-Aided Engineering, 20(5), 492–501.

    Article  Google Scholar 

  • Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., & Dhaene, T. (2012). Blind Kriging: Implementation and performance analysis. Advances in Engineering Software, 49, 1–13.

    Article  Google Scholar 

  • Crevecoeur, G., Sergeant, P., Dupre, L., & Van de Walle, R. (2010). A two-level genetic algorithm for electromagnetic optimization. IEEE Transactions on Magnetics, 46(7), 2585–2595.

    Article  Google Scholar 

  • CST Microwave Studio. (2018). CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.

    Google Scholar 

  • Davidson, D. B. (2010). Computational electromagnetics for RF and microwave engineering (2nd ed.). Cambridge University Press.

    Google Scholar 

  • de la Rubia, V., Razafison, U., & Maday, Y. (2009). Reliable fast frequency sweep for microwave devices via the reduced-basis method. IEEE Transactions on Microwave Theory and Techniques, 57(12), 2923–2937.

    Article  Google Scholar 

  • De Tommasi, L., Gorissen, D., Croon, J. A., & Dhaene, T. (2010). Surrogate modeling of RF circuit blocks. In A. Fitt, J. Norbury, H. Ockendon, & E. Wilson (Eds.), Progress in industrial mathematics at ECMI 2008 (Mathematics in Industry) (Vol. 15). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Declercq, F., Couckuyt, I., Rogier, H., & Dhaene, T. (2013). Environmental high frequency characterization of fabrics based on a novel surrogate modelling antenna technique. IEEE Transactions on Antennas and Propagation, 61(10), 5200–5213.

    Article  Google Scholar 

  • Dennis, J. M., Vertenstein, M., Worley, P. H., Mirin, A. A., Craig, A. P., & Jacob, R. (2012). Computational performance of ultra-high-resolution capability in the community earth system model. The International Journal of High Performance Computing Applications, 26(1), 5–16.

    Article  Google Scholar 

  • Deschrijver, D., Haegeman, B., & Dhaene, T. (2007). Orthonormal vector fitting: A robust macromodeling tool for rational approximation of frequency domain responses. IEEE Transactions on Advanced Packaging, 30(2), 216–225.

    Article  Google Scholar 

  • Director, S. W., & Rohrer, R. A. (1969). The generalized adjoint network and network sensitivities. IEEE Transactions on Circuit Theory, 16(3), 318–323.

    Article  Google Scholar 

  • Dray, S. (2008). On the number of principal components: A test of dimensionality based on measurements of similarity between matrices. Computational Statistics and Data Analysis, 52(4), 2228–2237.

    Article  MathSciNet  MATH  Google Scholar 

  • Du, J., & Roblin, C. (2017). Statistical modeling of disturbed antennas based on the polynomial chaos expansion. IEEE Antennas and Wireless Propagation Letters, 16, 1843–1846.

    Article  Google Scholar 

  • Du, J., & Roblin, C. (2018). Stochastic surrogate models of deformable antennas based on vector spherical harmonics and polynomial chaos expansions: Application to textile antennas. IEEE Transactions on Antennas and Propagation, 66(7), 3610–3622.

    Article  Google Scholar 

  • Echeverria, D., & Hemker, P. W. (2005). Space mapping and defect correction. Computational Methods in Applied. Mathematics, 5(2), 107–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Echeverria, D., Lahaye, D., Encica, L., Lomonova, E. A., Hemker, P. W., & Vandenput, A. J. A. (2006). Manifold-mapping optimization applied to linear actuator design. IEEE Transactions on Magnetics, 42(4), 1183–1186.

    Article  Google Scholar 

  • El Sabbagh, M. A., Bakr, M. H., & Nikolova, N. K. (2006). Sensitivity analysis of the scattering parameters of microwave filters using the adjoint network method. International Journal of RF and Microwave Computer-Aided Engineering, 16, 596–606.

    Article  Google Scholar 

  • emâ„¢ Version 16.56 (2018). Sonnet Software, Inc., Sonnet Software, Inc., 126 N. Salina Street, Syracuse, NY 13202, USA.

    Google Scholar 

  • Fakhfakh, M., Tlelo-Cuautle, E., & Siarry, P. (Eds.). (2015). Computational intelligence in analog and mixed-signal (AMS) and radio-frequency (RF) circuit design. Springer.

    Google Scholar 

  • Fang, M., Huang, Z., Sha, W. E. I., & Wu, X. (2017). Maxwell–hydrodynamic model for simulating nonlinear terahertz generation from plasmonic metasurfaces. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 194–201.

    Article  Google Scholar 

  • Feng, F., Zhang, C., Na, W., Zhang, J., Zhang, W., & Zhang, Q. (2019). Adaptive feature zero assisted surrogate-based EM optimization for microwave filter design. IEEE Microwave and Wireless Components Letters, 29(1), 2–4.

    Article  Google Scholar 

  • FLUENT, ver. 15.0, ANSYS Inc. (2015). Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA.

    Google Scholar 

  • Foo, J., & Karniadakis, G. E. (2010). Multi-element probabilistic collocation method in high dimensions. Journal of Computational Physics, 229(5), 1536–1557.

    Article  MathSciNet  MATH  Google Scholar 

  • Forrester, A. I. J., & Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 45(1), 50–79.

    Article  Google Scholar 

  • Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2007). Multi-fidelity optimization via surrogate modelling. Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088).

    Google Scholar 

  • Fusion 360. (2019). Autodesk, 111 McInnis Parkway San Rafael, 94903 California, USA.

    Google Scholar 

  • Gibson, W. C. (2007). The method of moments in electromagnetics. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Giles, M., & Pierce, N. (2000). An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65(3–4), 393–415.

    Article  MATH  Google Scholar 

  • Gorissen, D., Dhaene, T., & De Turck, F. (2009). Evolutionary model type selection for global surrogate modeling. Journal of Machine Learning Research, 10, 2039–2078.

    MathSciNet  MATH  Google Scholar 

  • Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T., & Demeester, P. (2010). A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, 2051–2055.

    Google Scholar 

  • Griewank, A. (2000). Evaluating derivatives: principles and techniques of algorithmic differentiation. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).

    MATH  Google Scholar 

  • Gutiérrez-Ayala, V., & Rayas-Sánchez, J. E. (2010). Neural input space mapping optimization based on nonlinear two-layer perceptrons with optimized nonlinearity. International Journal of RF and Microwave Computer-Aided Engineering, 20, 512–526.

    Article  Google Scholar 

  • Hajjaj, A. Z., Hafiz, M. A., & Younis, M. I. (2017). TI - mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters. Scientific Reports, 7, 41820.

    Article  Google Scholar 

  • Han, Z.-H., Görtz, S., & Zimmermann, R. (2013). Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerospace Science and Technology, 25(1), 177–189.

    Article  Google Scholar 

  • Hao, J., & Sheng, X. (2017). Accurate and efficient simulation model for the scattering from a ship on a sea-like surface. IEEE Geoscience and Remote Sensing Letters, 14(12), 2375–2379.

    Article  MathSciNet  Google Scholar 

  • Haykin, S. (1998). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • Hazdra, P., Polivka, M., & Sokol, V. (2005). Microwave antennas and circuits modeling using electromagnetic field simulator. Radioengineering, 14(4), 2–10.

    Google Scholar 

  • Henneron, T., & Clénet, S. (2014). Model order reduction of non-linear magnetostatic problems based on POD and DEI methods. IEEE Transactions on Magnetics, 50(2), 33–36.

    Article  Google Scholar 

  • HFSS. (2019). Release 19.0, ANSYS, http://www.ansoft.com/products/hf/hfss/, 2600 Ansys Dr., Canonsburg, PA 15317, USA.

  • Hosder, S. (2012). Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification. International Journal of Mathematical Modelling and Numerical Optimisation, 3(1/2), 117–139.

    Article  MATH  Google Scholar 

  • Hu, X., Chen, X., Parks, G. T., & Yao, W. (2016). Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles. Progress in Aerospace Sciences, 86, 20–27.

    Article  Google Scholar 

  • Inventor. (2019). Autodesk, 111 McInnis Parkway San Rafael, 94903 California, USA.

    Google Scholar 

  • Iuliano, E., & Andrés, P. E. (2016). Application of surrogate-based global optimization to aerodynamic design (Springer Tracts in Mechanical Engineering book series (STME)). Cham: Springer.

    Book  Google Scholar 

  • Jacobs, J. P. (2012). Bayesian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics. IEEE Transactions on Antennas and Propagation, 60(4), 2114–2118.

    Article  MathSciNet  MATH  Google Scholar 

  • Jameson, A. (1988). Aerodynamic design via control theory. Journal of Scientific Computing, 3, 233–260.

    Article  MATH  Google Scholar 

  • Jiang, C., Cai, X., Qiu, H., Gao, L., & Li, P. (2018). A two-stage support vector regression assisted sequential sampling approach for global metamodeling. Structural and Multidisciplinary Optimization, 58(4), 1657–1672.

    Article  Google Scholar 

  • Jin, J. (2002). The finite element method in electromagnetics (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 1(2), 61–70.

    Article  Google Scholar 

  • Jin, R., Chen, W., & Simpson, T. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1–3.

    Article  Google Scholar 

  • Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21, 345–383.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, D., Schonlau, M., & Welch, W. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Kabir, H., Wang, Y., Yu, M., & Zhang, Q. J. (2008). Neural network inverse modeling and applications to microwave filter design. IEEE Transactions on Microwave Theory and Techniques, 56(4), 867–879.

    Article  Google Scholar 

  • Keyes, D. E., McInnes, L. C., Woodward, C., Gropp, W., Myra, E., Pernice, M., & Wohlmuth, B. (2013). Multiphysics simulations: Challenges and opportunities. International Journal of High Performance Computing Applications, 27(1), 4–83.

    Article  Google Scholar 

  • Khalatpour, A., Amineh, R. K., Cheng, Q. S., Bakr, M. H., Nikolova, N. K., & Bandler, J. W. (2011). Accelerating input space mapping optimization with adjoint sensitivities. IEEE Microwave and Wireless Components Letters, 21(6), 280–282.

    Article  Google Scholar 

  • Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology: Advanced review. Computational Statistics, 2(2), 128–149.

    Article  Google Scholar 

  • Kitayama, S., Arakawa, M., & Yamazaki, K. (2011). Sequential approximate optimization using radial basis function network for engineering optimization. Optimization and Engineering, 12(4), 535–557.

    Article  MATH  Google Scholar 

  • Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Kleijnen, J. P. C. (2018). Design and analysis of simulation experiments. In J. Pilz, D. Rasch, V. Melas, & K. Moder (Eds.), Statistics and simulation. IWS 2015. Springer Proceedings in Mathematics & Statistics (Vol. 231). Cham: Springer.

    Google Scholar 

  • Ko, J., Byun, J., Park, J., & Kim, H. (2011). Robust design of dual band/polarization patch antenna using sensitivity analysis and Taguchi's method. IEEE Transactions on Magnetics, 47(5), 1258–1261.

    Article  Google Scholar 

  • Kouassi, A., Nguyen-Trong, N., Kaufmann, T., Lalléchère, S., Bonnet, P., & Fumeaux, C. (2016). Reliability-aware optimization of a wideband antenna. IEEE Transactions on Antennas and Propagation, 64(2), 450–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Kozakoff, D. J. (2010). Analysis of radome-enclosed antennas. Boston: Artech House.

    Google Scholar 

  • Koziel, S. (2010). Shape-preserving response prediction for microwave design optimization. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2829–2837.

    Article  Google Scholar 

  • Koziel, S. (2017). Low-cost data-driven surrogate modeling of antenna structures by constrained sampling. IEEE Antennas and Wireless Propagation Letters, 16, 461–464.

    Article  Google Scholar 

  • Koziel, S., & Bandler, J. W. (2015). Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis. IEEE Transactions on Microwave Theory and Techniques, 63(1), 107–114.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2015). Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4019–4026.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2016). Multi-objective design of antennas using surrogate models. Singapore: World Scientific.

    MATH  Google Scholar 

  • Koziel, S., Bekasiewicz, A., Kurgan P., & Bandler, J.W. (2016). Rapid multi-objective de-sign optimisation of compact microwave couplers by means of physics-based surro-gates, IET Microwaves, Antennas & Propagation, 10(5), 479–486.

    Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2017a). On reduced-cost design-oriented constrained surrogate modeling of antenna structures. IEEE Antennas and Wireless Propagation Letters, 16, 1618–1621.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2017b). Computationally-efficient surrogate-assisted dimension scaling of compact dual-band couplers. IET Microwaves, Antennas & Propagation, 11(4), 465–470.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2018a). Sequential approximate optimisation for statistical analysis and yield optimisation of circularly polarised antennas. IET Microwaves, Antennas & Propagation, 12(13), 2060–2064.

    Article  Google Scholar 

  • Koziel, S., & Bekasiewicz, A. (2018b). Low-cost and reliable geometry scaling of compact microstrip couplers with respect to operating frequency, power split ratio, and dielectric substrate parameters. IET Microwaves, Antennas & Propagation, 12(9), 1508–1513.

    Article  Google Scholar 

  • Koziel, S., & Leifsson, L. (Eds.). (2013a). Surrogate-based modeling and optimization. Applications in engineering. New York: Springer.

    MATH  Google Scholar 

  • Koziel, S., & Leifsson, L. (2013b). Surrogate-based aerodynamic shape optimization by variable-resolution models. AIAA Journal, 51(1), 94–106.

    Article  Google Scholar 

  • Koziel, S., & Leifsson, L. (2016). Simulation-driven design by knowledge-based response correction techniques. Cham: Springer.

    Book  MATH  Google Scholar 

  • Koziel, S., & Ogurtsov, S. (2012). Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations. IET Microwaves, Antennas and Propagation, 6, 1643–1650.

    Article  Google Scholar 

  • Koziel, S., & Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Koziel, S., & Unnsteinsson, S. D. (2018). Expedited design closure of antennas by means of trust-region-based adaptive response scaling. IEEE Antennas and Wireless Propagation Letters, 17(6), 1099–1103.

    Google Scholar 

  • Koziel, S., & Sigurðsson A.T. (2018). Triangulation-based constrained surrogate modeling of antennas, IEEE Transactions on Antennas and Propagation, 66(8), 4170–4179.

    Google Scholar 

  • Koziel, S., & Ogurtsov, S. (2019). Simulation-based optimization of antenna arrays. London: World Scientific.

    Book  MATH  Google Scholar 

  • Koziel, S., Sigurðsson, A.T., Pietrenko-Dabrowska,& A., Szczepanski, S. (2019). Enhanced uniform data sampling for constrained data-driven modeling of antenna input characteristics, International Journal of Numerical Modelling: Electronic Devices and Fields, 32(5), e2584.

    Google Scholar 

  • Koziel, S., & Pietrenko-Dabrowska, A. (2019a). Performance-based nested surrogate modeling of antenna input characteristics. IEEE Transactions on Antennas and Propagation, 67(5), 2904–2912.

    Article  Google Scholar 

  • Koziel, S., & Pietrenko-Dabrowska, A. (2019b). Reduced-cost surrogate modelling of compact microwave components by two-level kriging interpolation. Engineering Optimization. https://doi.org/10.1080/0305215X.2019.1630399.

  • Koziel, S., Cheng, Q. S., & Bandler, J. W. (2008). Space mapping. IEEE Microwave Magazine, 9(6), 105–122.

    Article  Google Scholar 

  • Koziel, S., Bandler, J. W., & Madsen, K. (2009). Space mapping with adaptive response correction for microwave design optimization. IEEE Transactions on Microwave Theory and Techniques, 57, 478–486.

    Article  Google Scholar 

  • Koziel, S., Bandler, J. W., & Cheng, Q. S. (2011). Constrained parameter extraction for microwave design optimisation using implicit space mapping. IET Microwave, Antennas & Propagation, 5, 1156–1163.

    Article  Google Scholar 

  • Koziel, S., Yang, X. S., & Zhang, Q. J. (Eds.). (2013). Simulation-driven design optimization and modeling for microwave engineering. London: Imperial College Press.

    Google Scholar 

  • Koziel, S., Ogurtsov, S., Zieniutycz, W., & Sorokosz, L. (2014). Simulation-driven design of microstrip antenna subarrays. IEEE Transactions on Antennas and Propagation, 62(7), 3584–3591.

    Article  Google Scholar 

  • Koziel, S., Sigurðsson, A. T., & Szczepanski, S. (2018). Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics. IEEE Antennas and Wireless Propagation Letters, 17(1), 164–167.

    Article  Google Scholar 

  • Krause, E., & Jäger, W. (Eds.). (2005). High performance computing in science and engineering. Stuttgart: Transactions of the High Performance Computing Center.

    Google Scholar 

  • Leary, S., Bhaskar, A., & Keane, A. (2003). Optimal orthogonal-array-based latin hypercubes. Journal of Applied Statistics, 30, 585–598.

    Google Scholar 

  • Lee, S. H., & Jin, J. M. (2007). Adaptive solution space projection for fast and robust wideband finite-element simulation of microwave components. IEEE Microwave and Wireless Components Letters, 17(7), 474–476.

    Article  Google Scholar 

  • Li, X. (2010). Finding deterministic solution from underdetermined equation: Largescale performance modeling of analog/RF circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(11), 1661–1668.

    Article  Google Scholar 

  • Li, X., Zhang, W., Wang, F., Sun, S., & Gu, C. (2012). Efficient parametric yield estimation of analog/mixed-signal circuits via Bayesian model fusion. 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). San Jose. pp. 627–634.

    Google Scholar 

  • Liersch, C. M., & Hepperle, M. (2011). A distributed toolbox for multidisciplinary preliminary aircraft design. CEAS Aeronautical Journal, 2(1–4), 57–68.

    Article  Google Scholar 

  • Lim, D., Jin, Y., Ong, Y., & Sendhoff, B. (2010). Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on Evolutionary Computation, 14(3), 329–355.

    Article  Google Scholar 

  • Lim, D., Woo, D., Yeo, H., Jung, J., Ro, S., & Jung, H. (2015). A novel surrogate-assisted multi-objective optimization algorithm for an electromagnetic machine design. IEEE Transactions on Magnetics, 51(3), 1–4.

    Article  Google Scholar 

  • Lin, Y., Bao, L., & Wei, Y. (2007). A model-order reduction method based on Krylov subspaces for mimo bilinear dynamical systems. Journal of Applied Mathematics and Computing, 25(1–2), 293.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, B. (2017). Posterior exploration based sequential Monte Carlo for global optimization. Journal of Global Optimization, 69(4), 847–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, H., Ong, Y. S., & Cai, J. (2018). A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Journal of Structural and Multidisciplinary Optimization, 57(1), 416.

    Article  Google Scholar 

  • Liu, Y., Shi, Y., Zhou, Q., & Xiu, R. (2016). A sequential sampling strategy to improve the global fidelity of metamodels in multi-level system design. Structural and Multidisciplinary Optimization, 53(6), 1295–1313.

    Article  MathSciNet  Google Scholar 

  • Liu, H., Hervas, J. R., Ong, Y. S., Cai, J., & Wang, Y. (2018). An adaptive RBF-HDMR modeling approach under limited computational budget. Structural and Multidisciplinary Optimization, 57(3), 1–18.

    MathSciNet  Google Scholar 

  • Lourenço, J. M., & Lebensztajn, L. (2015). Surrogate modeling and two-level infill criteria applied to electromagnetic device optimization. IEEE Transactions on Magnetics, 51(3), 1–4.

    Article  Google Scholar 

  • Ma, X., & Zabaras, N. (2010). An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. Journal of Computational Physics, 229, 3884–3915.

    Article  MathSciNet  MATH  Google Scholar 

  • Mack, Y., Goel, T., Shyy, W., & Haftka, R. (2007). Surrogate model-based optimization framework: A case study in aerospace. Design, Studies in Computational Intelligence (SCI), 51, 323–342.

    Article  Google Scholar 

  • Mackman, T. J., Allen, C. B., Ghoreyshi, M., & Nadcock, K. J. (2013). Comparison of adaptive sampling methods for generation of surrogate aerodynamic models. AIAA Journal, 51(4), 797–808.

    Article  Google Scholar 

  • Mandal, A., Zafar, H., Das, S., & Vasilakos, A. V. (2012). A modified differential evolution algorithm for shaped beam linear array antenna design. Progress in Electromagnetic Research, 125, 439–457.

    Article  Google Scholar 

  • Mandic, T., Magerl, M., & Baric, A. (2019). Sequential buildup of broadband equivalent circuit model for low-cost SMA connectors. IEEE Transactions on Electromagnetic Compatibility, 61(1), 242–250.

    Google Scholar 

  • Manfredi, P., Ginste, D. V., Stievano, I. S., De Zutter, D., & Canavero, F. G. (2017). Stochastic transmission line analysis via polynomial chaos methods: an overview. IEEE Electromagnetic Compatibility Magazine, 6(3), 77–84, Third Quarter 2017.

    Google Scholar 

  • Mehmani, A., Chowdhury, S., Tong, W., & Messac, A. (2015). Adaptive switching of variable-fidelity models in population-based optimization. In N. Lagaros & M. Papadrakakis (Eds.), Engineering and applied sciences optimization (Computational Methods in Applied Sciences) (Vol. 38). Cham: Springer.

    Chapter  Google Scholar 

  • Mendes, M. H. S., Soares, G. L., Coulomb, J., & Vasconcelos, J. A. (2013). Appraisal of surrogate modeling techniques: A case study of electromagnetic device. IEEE Transactions on Magnetics, 49(5), 1993–1996.

    Article  Google Scholar 

  • Momentum. (2019). Keysight Technologies, Fountaingrove Parkway 1400, Santa Rosa, CA 95403–1799.

    Google Scholar 

  • Mukhopadhyay, N. (2011). Sequential sampling. In M. Lovric (Ed.), International encyclopedia of statistical science. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Muller, J., & Shoemaker, C. A. (2014). Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems. Journal of Global Optimization, 60(2), 123–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Multiphysics Simulation. (2019). ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA.

    Google Scholar 

  • Needell, D., & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis., 26(3), 301–321.

    Article  MathSciNet  MATH  Google Scholar 

  • NI Microwave Office. (2019). National Instruments, 11500 N Mopac Expy, Austin, TX 78759, USA.

    Google Scholar 

  • Nikolova, N. K., Li, Y., Li, Y., & Bakr, M. H. (2006). Sensitivity analysis of scattering parameters with electromagnetic time-domain simulators. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1598–1610.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2000). Numerical optimization (Springer Series in Operations Research). New York: Springer.

    MATH  Google Scholar 

  • Palacios, F., Colonno, M. R., Aranake, A. C., Campos, A., Copeland, S. R., Economon, T. D., Lonkar, A. K., Lukaczyk, T. W., Taylor, T. W. R., & Alonso, J. J. (2013). Stanford University unstructures (SU2): An open-source integrated computational environment for multi-physics simulation and design. Grapevine: AIAA Aerospace Sciences Meeting.

    Google Scholar 

  • Pantoja, M. F., Meincke, P., & Bretones, A. R. (2007). A hybrid genetic-algorithm space-mapping tool for the optimization of antennas. IEEE Transactions on Antennas and Propagation, 55(3), 777–781.

    Article  Google Scholar 

  • Papadimitriou, D. I., & Giannakoglou, K. C. (2008). Aerodynamic shape optimization using first and second order adjoint and direct approaches. Archives of Computational Methods in Engineering, 15, 447–488.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, D., Chung, I. B., & Choi, D. H. (2018). Surrogate based global optimization using adaptive switching infill sampling criterion. In A. Schumacher, T. Vietor, S. Fiebig, K. U. Bletzinger, & K. Maute (Eds.), Advances in structural and multidisciplinary optimization. WCSMO 2017 (pp. 692–699). Cham: Springer.

    Google Scholar 

  • Paulotto, S., Baccarelli, P., Frezza, F., & Jackson, D. R. (2008). Full-wave modal dispersion analysis and broadside optimization for a class of microstrip CRLH leaky-wave antennas. IEEE Transactions on Microwave Theory and Techniques, 56(12), 2826–2837.

    Article  Google Scholar 

  • Pironneau, O. (1984). Optimal shape design for elliptic systems. New York: Springer.

    Book  MATH  Google Scholar 

  • Pistikopoulos, E. N., Georgiadis, M. C., & Dua, V. (2007). Multi-parametric programming. Weinheim: Wiley VCH.

    Book  Google Scholar 

  • Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidynathan, R., & Tucker, P. K. (2005). Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41(1), 1–28.

    Article  Google Scholar 

  • Rangel-Patiño, F. E., Chávez-Hurtado, J. L., Viveros-Wacher, A., Rayas-Sánchez, J. E., & Hakim, N. (2017). System margining surrogate-based optimization in post-silicon validation. IEEE Transactions on Microwave Theory and Techniques, 65(9), 3109–3115.

    Article  Google Scholar 

  • Ravelo, B. (2018). Multiphysics model of microstrip structure under high voltage pulse excitation. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 3, 88–96.

    Article  Google Scholar 

  • Rayas-Sanchez, J. E. (2016). Power in simplicity with ASM: Tracing the aggressive space mapping algorithm over two decades of development and engineering applications. IEEE Microwave Magazine, 17(4), 64–76.

    Article  Google Scholar 

  • Robinson, T. D., Eldred, M. S., Willcox, K. E., & Haimes, R. (2008). Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA Journal, 46(11), 2814–2822.

    Article  Google Scholar 

  • Rosenberg, A., Selvaraj, S., & Sharma, A. (2014). A novel dual-rotor turbine for increased wind energy capture. Journal of Physics: Conference Series, 524, 1–10.

    Google Scholar 

  • Rossi, M., Dierck, A., Rogier, H., & Vande Ginste, D. (2014). A stochastic framework for the variability analysis of textile antennas. IEEE Transactions on Antennas and Propagation, 62(12), 6510–6514.

    Article  MathSciNet  MATH  Google Scholar 

  • Rozhenko, A. I. (2018). Comparison of radial basis functions. Numerical Analysis and Applications, 11(3), 220–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Sadrossadat, S. A., Cao, Y., & Zhang, Q. (2013). Parametric modeling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique. IEEE Transactions on Microwave Theory and Techniques, 61(5), 1733–1747.

    Article  Google Scholar 

  • Salleh, M. K. M., Prigent, G., Pigaglio, O., & Crampagne, R. (2008). Quarter-wavelength side-coupled ring resonator for bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 56(1), 156–162.

    Article  Google Scholar 

  • San, H., Kobayashi, H., Kawakami, S., & Kuroiwa, N. (2004). A noise-shaping algorithm of multi-bit DAC nonlinearities in complex bandpass ΔΣAD modulators. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A(4), 792–800.

    Google Scholar 

  • Santner, T. J., Williams, B. J., & Notz, W. I. (2018). Space-filling designs for computer experiments. In The design and analysis of computer experiments (Springer Series in Statistics). New York: Springer.

    Chapter  MATH  Google Scholar 

  • Sarkar, T. K., Chen, H., Palma, M. S., & Zhu, M. (2019). Lessons learned using a physics based macro model for analysis of radio wave propagation in wireless transmission. IEEE Transactions on Antennas and Propagation, 67(4), 2150–2157.

    Article  Google Scholar 

  • Sato, Y., Campelo, F., & Igarashi, H. (2015). Fast shape optimization of antennas using model order reduction. IEEE Transactions on Magnetics, 51(3), 1–4.

    Google Scholar 

  • Sevgi, L. (2014). Electromagnetic modeling and simulation (IEEE Press Series on Electromagnetic Wave Theory). Hoboken: Wiley.

    Book  Google Scholar 

  • Shaker, G. S. A., Bakr, M. H., Sangary, N., & Safavi-Naeini, S. (2009). Accelerated antenna design methodology exploiting parameterized Cauchy models. Progress in Electromagnetic Research (PIER B), 18, 279–309.

    Article  Google Scholar 

  • Shan, S., & Wang, G. (2011a). Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization, 41(219), 219–241.

    MathSciNet  MATH  Google Scholar 

  • Shan, S., & Wang, G. (2011b). Turning black-box functions into white functions. Journal of Mechanical Design, 133(3), 031003.

    Article  Google Scholar 

  • Sharma, S., & Sarris, C. D. (2016). A novel multiphysics optimization-driven methodology for the design of microwave ablation antennas. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 1, 151–160.

    Article  Google Scholar 

  • Shitvov, A., Schuchinsky, A. G., Steer, M. B., & Wetherington, J. M. (2014). Characterisation of nonlinear distortion and intermodulation in passive devices and antennas, 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague. pp. 1454–1458.

    Google Scholar 

  • Siegler, J., Ren, J., Leifsson, L., Koziel, S., & Bekasiewicz, A. (2016). Supersonic airfoil shape optimization by variable-fidelity models and manifold mapping. Procedia Computer Science, 80, 1103–1113.

    Article  Google Scholar 

  • Simpson, T. W., Peplinski, J., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: Survey and recommendations. Engineering Computers, 17, 129–150.

    Article  MATH  Google Scholar 

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199–222.

    Article  MathSciNet  Google Scholar 

  • Sobester, A., & Forrester, A. I. J. (2015). Aircraft aerodynamic design: Geometry and optimization. Chichester: John Wiley & Sons.

    Google Scholar 

  • Sóbester, A., Forrester, A. I. J., Toal, D. J. J., Tresidder, E., & Tucker, S. (2012). Engineering design applications of surrogate-assisted optimization techniques. Optimization and Engineering, 15(1), 243–265.

    Article  MATH  Google Scholar 

  • Star-CCM+ (2015). CD-adapco Group, 60 Broadhollow Road, Melville, NY 11747, USA.

    Google Scholar 

  • Styblinski, M. A., & Opalski, L. J. (1986). Algorithms and software tools for IC yield optimization based on fundamental fabrication parameters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 5(1), 79–89.

    Article  Google Scholar 

  • Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety, 93(7), 964–979.

    Article  Google Scholar 

  • Sullivan, D. M. (2013). Electromagnetic simulation using the FDTD method (2nd ed.). Hoboken: John Wiley & Sons.

    Book  Google Scholar 

  • Swanson, D. G., & Hoefer W. J. R. (2003). Microwave circuit modeling using electromagnetic field simulation, Artech House Microwave Library.

    Google Scholar 

  • Szakmany, G. P., Orlov, A. O., Bernstein, G. H., Lin, M., & Porod, W. (2018). Multiphysics THz antenna simulations. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 3, 289–294.

    Article  Google Scholar 

  • Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., & Sindhya, K. (2015). A survey on handling computationally expensive multiobjective optimization problems using surrogates: Non-nature inspired methods. Structural and Multidisciplinary Optimization, 52(1), 1–25.

    Article  MathSciNet  Google Scholar 

  • Tao, J., Liao, C., Zeng, X., & Li, X. (2016). Harvesting design knowledge from internet: High-dimensional performance trade-off modeling for large-scale analog circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(1), 23–36.

    Article  Google Scholar 

  • Tao, J., Wang, F., Cachecho, P., Zhang, W., Sun, S., Li, X., Kanj, R., Gu, C., & Zeng, X. (2019). Large-scale circuit performance modeling by bayesian model fusion. In I. Elfadel, D. Boning, & X. Li (Eds.), Machine learning in VLSI computer-aided design. Cham: Springer.

    Google Scholar 

  • Toivanen, J. I., Makinen, R. A. E., Jarvenpaa, S., Yla-Oijala, P., & Rahola, J. (2009). Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation. IEEE Transactions on Antennas and Propagation, 57(1), 168–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Toropov, V. V. (1989). Simulation approach to structural optimization. Structural Optimization, 1, 37–46.

    Article  Google Scholar 

  • Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, F., Zhang, W., Sun, S., Li, X., & Gu, C. (2013). Bayesian model fusion: Large scale performance modeling of analog and mixed-signal circuits by reusing early-stage data. Design Automation Conference (DAC). Austin.

    Google Scholar 

  • Wang, F., Cachecho, P., Zhang, W., Sun, S., Li, X., Kanj, R., & Gu, C. (2016). Bayesian model fusion: Large-scale performance modeling of analog and mixed-signal circuits by reusing early-stage data. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 35(8), 1255–1268.

    Article  Google Scholar 

  • Wang, K., Ding, D., & Chen, R. (2018). A surrogate modeling technique for electromagnetic scattering analysis of 3-d objects with varying shape. IEEE Antennas and Wireless Propagation Letters, 17(8), 1524–1527.

    Article  Google Scholar 

  • Wang, J., Yu, H., & Fu, X. (2018). Optimized design of the radome based on the digital beam forming technique. 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou. pp. 1–3.

    Google Scholar 

  • Webb, J. P. (2004). Matching a given field using hierarchal vector basis functions. Electromagnetics, 24, 113–122.

    Article  Google Scholar 

  • Wehner, M. F., Bala, G., Duffy, P., Mirin, A. A., & Romano, R. (2010). Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Advances in Meteorology, 2010, 1–13.

    Article  Google Scholar 

  • Wei, X., Wu, Y.-Z., & Chen, L.-P. (2012). A new sequential optimal sampling method for radial basis functions. Applied Mathematics and Computation, 218(19), 9635–9646.

    Article  MathSciNet  MATH  Google Scholar 

  • White, J. F. (2004). High frequency techniques: An introduction to RF and microwave design and computer simulation. Hoboken: Wiley-IEEE Press.

    Google Scholar 

  • Wild, S. M., Regis, R. G., & Shoemaker, C. A. (2008). ORBIT: Optimization by radial basis function interpolation in trust-regions. SIAM Journal on Scientific Computing, 30, 3197–3219.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, X., Peng, X., Chen, W., & Zhang, W. (2019). A developed surrogate-based optimization framework combining HDMR-based modeling technique and TLBO algorithm for high-dimensional engineering problems. Structural and Multidisciplinary Optimization, 60(2), 663–680.

    Article  Google Scholar 

  • XFDTD. (2016). Remcom, Inc., South Allen 315, Suite 416, State College, PA 16801.

    Google Scholar 

  • Xiong, F., Xiong, Y., Chen, W., & Yang, S. (2009). Optimizing Latin hypercube design for sequential sampling of computer experiments. Engineering Optimization, 41(8), 793–810.

    Article  Google Scholar 

  • Xiu, D. (2009). Fast numerical methods for stochastic computations: A review. Communications in Computational Physics, 5(2–4), 242–272.

    MathSciNet  MATH  Google Scholar 

  • Xu, S., Liu, H., Wang, X., & Jiang, X. (2014). A robust error-pursuing sequential sampling approach for global metamodeling based on Voronoi diagram and cross validation, ASME. Journal of Mechanical Design, 136(7), 071009.

    Article  Google Scholar 

  • Yang, X. S. (2010). Engineering optimization: An introduction with metaheuristic applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Yang, Z., Qiu, H., Gao, L., Jiang, C., & Zhang, J. (2019). Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems. Journal of Global Optimization, 74(2), 327–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Yelten, M. B., Zhu, T., Koziel, S., Franzon, P. D., & Steer, M. B. (2012). Demystifying surrogate modeling for circuits and systems. IEEE Circuits and Systems Magazine, 12(1), 45–63.

    Article  Google Scholar 

  • Yondo, R., Andrés, E., & Eusebio, V. (2018). A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses. Progress in Aerospace Sciences, 96, 23–61.

    Article  Google Scholar 

  • Yondo, R., Bobrowski, K., Andrés, E., & Valero, E. (2019). A review of surrogate modeling techniques for aerodynamic analysis and optimization: Current limitations and future challenges in industry. In E. Minisci, M. Vasile, J. Periaux, N. Gauger, K. Giannakoglou, & D. Quagliarella (Eds.), Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences (Computational Methods in Applied Sciences) (Vol. 48). Cham: Springer.

    Google Scholar 

  • You, J. W., Tan, S. R., Zhou, X. Y., Yu, W. M., & Cui, T. J. (2014). A new method to analyze broadband antenna-radome interactions in time-domain. IEEE Transactions on Antennas and Propagation, 62(1), 334–344.

    Article  Google Scholar 

  • Zaslavski, A. J. (2010). Parametric optimization. In Optimization on metric and normed spaces (Springer Optimization and Its Applications) (Vol. 44). New York: Springer.

    Chapter  MATH  Google Scholar 

  • Zhang, C., Jin, J., Na, W., Zhang, Q., & Yu, M. (2018). Multivalued neural network inverse modeling and applications to microwave filters. IEEE Transactions on Microwave Theory and Techniques, 66(8), 3781–3797.

    Article  Google Scholar 

  • Zhang, W., Feng, F., Gongal-Reddy, V.-M.-R., Zhang, J., Yan, S., Ma, J., & Zhang, Q.-J. (2018). Space mapping approach to electromagnetic centric multiphysics parametric modeling of microwave components. IEEE Transactions on Microwave Theory and Techniques, 66(7), 3169–3185.

    Article  Google Scholar 

  • Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., & Lum, K. Y. (2007). Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(1), 66–76.

    Article  Google Scholar 

  • Zhu, L. (2002). Realistic equivalent circuit model of coplanar waveguide open circuit: Lossy shunt resonator network. IEEE Microwave and Wireless Components Letters, 12(5), 175–177.

    Article  Google Scholar 

  • Zhu, Y., & Cangellaris, A. C. (2001). A new finite element model for reduced order electromagnetic modeling. IEEE Microwave and Wireless Components Letters, 11(5), 211–213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koziel, S., Pietrenko-Dabrowska, A. (2020). Introduction. In: Performance-Driven Surrogate Modeling of High-Frequency Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-38926-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38926-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38925-3

  • Online ISBN: 978-3-030-38926-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics