Skip to main content

Bounds for the Number of Tests in Non-adaptive Randomized Algorithms for Group Testing

  • Conference paper
  • First Online:
SOFSEM 2020: Theory and Practice of Computer Science (SOFSEM 2020)

Abstract

We study the group testing problem with non-adaptive randomized algorithms. Several models have been discussed in the literature to determine how to randomly choose the tests. For a model \(\mathcal{M}\), let \(m_\mathcal{M}(n,d)\) be the minimum number of tests required to detect at most d defectives within n items, with success probability at least \(1-\delta \), for some constant \(\delta \). In this paper, we study the measures

$$c_\mathcal{M}(d)=\lim _{n\rightarrow \infty } \frac{m_\mathcal{M}(n,d)}{\ln n} \text{ and } \ c_\mathcal{M}=\lim _{d\rightarrow \infty } \frac{c_\mathcal{M}(d)}{d}.$$

In the literature, the analyses of such models only give upper bounds for \(c_\mathcal{M}(d)\) and \(c_\mathcal{M}\), and for some of them, the bounds are not tight. We give new analyses that yield tight bounds for \(c_\mathcal{M}(d)\) and \(c_\mathcal{M}\) for all the known modelsĀ \(\mathcal{M}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rykov, V.V., Dā€™yachkov, A.G.: Bounds on the length of disjunctive codes. Probl. Peredachi Inf. 18, 7ā€“13 (1982)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319ā€“342 (1987)

    MathSciNetĀ  Google ScholarĀ 

  3. Balding, D.J., Bruno, W.J., Torney, D.C., Knill, E.: A comparative survey of non-adaptive pooling designs. In: Speed, T., Waterman, M.S. (eds.) Genetic Mapping and DNA Sequencing. IMA, vol. 81, pp. 133ā€“154. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0751-1_8

    ChapterĀ  Google ScholarĀ 

  4. Bruno, W.J., et al.: Efficient pooling designs for library screening. Genomics 26(1), 21ā€“30 (1995)

    ArticleĀ  Google ScholarĀ 

  5. Bshouty, N.H., Diab, N., Kawar, S.R., Shahla, R.J.: Non-adaptive randomized algorithm for group testing. In International Conference on Algorithmic Learning Theory, ALT 2017, 15ā€“17 October 2017, Kyoto University, Kyoto, Japan, pp. 109ā€“128 (2017)

    Google ScholarĀ 

  6. Cicalese, F.: Group testing. Fault-Tolerant Search Algorithms. MTCSAES, pp. 139ā€“173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17327-1_7

    ChapterĀ  MATHĀ  Google ScholarĀ 

  7. Cormode, G., Muthukrishnan, S.: Whatā€™s hot and whatā€™s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249ā€“278 (2005)

    ArticleĀ  Google ScholarĀ 

  8. Damaschke, P., Muhammad, A.S.: Randomized group testing both query-optimal and minimal adaptive. In: BielikovĆ”, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., TurĆ”n, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 214ā€“225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27660-6_18

    ChapterĀ  Google ScholarĀ 

  9. Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14(4), 436ā€“440 (1943)

    ArticleĀ  Google ScholarĀ 

  10. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientfic Publishing, Singapore (1993)

    BookĀ  Google ScholarĀ 

  11. Du, D.-Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientfic Publishing, Singapore (2006)

    BookĀ  Google ScholarĀ 

  12. Erdƶs, P., RĆ©nyi, A.: On two problems of information theory, pp. 241ā€“254 (1963). Publications of the Mathematical Institute of the Hungarian Academy of Sciences

    Google ScholarĀ 

  13. FĆ¼redi, Z.: On \(r\)-cover-free families. J. Comb. Theory Ser. A 73(1), 172ā€“173 (1996)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans. Image Process. 11(8), 901ā€“911 (2002)

    ArticleĀ  Google ScholarĀ 

  15. Hwang, F.K.: A method for detecting all defective members in a population by group testing. J. Am. Stat. Assoc. 67(339), 605ā€“608 (1972)

    ArticleĀ  Google ScholarĀ 

  16. Hwang, F.K.: Random k-set pool designs with distinct columns. Probab. Eng. Inf. Sci. 14(1), 49ā€“56 (2000)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  17. Hwang, F.K., Liu, Y.C.: The expected numbers of unresolved positive clones for various random pool designs. Probab. Eng. Inf. Sci. 15(1), 57ā€“68 (2001)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  18. Hwang, F.K., Liu, Y.C.: A general approach to compute the probabilities of unresolved clones in random pooling designs. Probab. Eng. Inf. Sci. 18(2), 161ā€“183 (2004)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. Hwang, F.K., Liu, Y.: Random pooling designs under various structures. J. Comb. Optim. 7, 339ā€“352 (2003)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10(4), 363ā€“377 (1964)

    ArticleĀ  Google ScholarĀ 

  21. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data. Discrete Appl. Math. 144(1), 149ā€“157 (2004). Discrete Mathematics and Data Mining

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  22. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982ā€“7989 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  23. Ngo, H.Q., Du, D.-Z.: A survey on combinatorial group testing algorithms with applications to DNA library screening. Discrete Math. Theor. Comput. Sci. 55, 171ā€“182 (2000). DIMACS Series

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. RuszinkĆ³, M.: On the upper bound of the size of the r-cover-free families. J. Comb. Theory Ser. A 66(2), 302ā€“310 (1994)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  25. Sebƶ, A.: On two random search problems. J. Stat. Plan. Inference 11(1), 23ā€“31 (1985)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  26. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31(2), 185ā€“191 (1985)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Haddad-Zaknoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bshouty, N.H., Haddad, G., Haddad-Zaknoon, C.A. (2020). Bounds for the Number of Tests in Non-adaptive Randomized Algorithms for Group Testing. In: Chatzigeorgiou, A., et al. SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science(), vol 12011. Springer, Cham. https://doi.org/10.1007/978-3-030-38919-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38919-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38918-5

  • Online ISBN: 978-3-030-38919-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics