Skip to main content

Scanning Phylogenetic Networks Is NP-hard

  • Conference paper
  • First Online:
SOFSEM 2020: Theory and Practice of Computer Science (SOFSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12011))

Abstract

Phylogenetic networks are rooted directed acyclic graphs used to depict the evolution of a set of species in the presence of reticulate events. Reconstructing these networks from molecular data is challenging and current algorithms fail to scale up to genome-wide data. In this paper, we introduce a new width measure intended to help design faster parameterized algorithms for this task. We study its relation with other width measures and problems in graph theory and finally prove that deciding it is NP-complete, even for very restricted classes of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs Comb. 22(2), 161–172 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bordewich, M., Scornavacca, C., Tokac, N., Weller, M.: On the fixed parameter tractability of agreement-based phylogenetic distances. J. Math. Biol. 74(1), 239–257 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bordewich, M., Semple, C.: Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 458–466 (2007)

    Article  Google Scholar 

  4. Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N.A., RoyChoudhury, A.: Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29(8), 1917–1932 (2012)

    Article  Google Scholar 

  5. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT. Theor. Comput. Sci. 351(3), 296–302 (2006)

    Article  Google Scholar 

  6. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., Ltd., New York City (1979)

    MATH  Google Scholar 

  8. Grigoriev, A., Kelk, S., Lekić, N.: On low treewidth graphs and supertrees. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 71–82. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07953-0_6

    Chapter  Google Scholar 

  9. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts: Algorithms and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  11. Kelk, S., Scornavacca, C.: Constructing minimal phylogenetic networks from softwired clusters is fixed parameter tractable. Algorithmica 68(4), 886–915 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kelk, S., Stamoulis, G., Wu, T.: Treewidth distance on phylogenetic trees. Theor. Comput. Sci. 731, 99–117 (2018)

    Article  MathSciNet  Google Scholar 

  13. Rabier, C.E., Berry, V., Pardi, F., Scornavacca, C.: On the inference of complicated phylogenetic networks by Markov chain Monte-Carlo (submitted)

    Google Scholar 

  14. Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4(3), 226–248 (1975)

    Article  MathSciNet  Google Scholar 

  15. Whidden, C., Beiko, R.G., Zeh, N.: Fixed-parameter algorithms for maximum agreement forests. SIAM J. Comput. 42(4), 1431–1466 (2013)

    Article  MathSciNet  Google Scholar 

  16. Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of species networks from multilocus sequence data. Mol. Biol. Evol. 35(2), 504–517 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fabio Pardi to have brought the problem to our attention and the Genome Harvest project, ref. ID 1504-006 (“Investissements d’avenir”, ANR-10-LABX-0001-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Weller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berry, V., Scornavacca, C., Weller, M. (2020). Scanning Phylogenetic Networks Is NP-hard. In: Chatzigeorgiou, A., et al. SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science(), vol 12011. Springer, Cham. https://doi.org/10.1007/978-3-030-38919-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38919-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38918-5

  • Online ISBN: 978-3-030-38919-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics